Preclinical research studies for treating severe muscular injuries: focus on tissue-engineered strategies

被引:9
作者
Alheib, Omar [1 ,2 ]
da Silva, Lucilia P. [1 ,2 ]
Kwon, Il Keun [3 ]
Reis, Rui L. [1 ,2 ,3 ]
Correlo, Vitor M. [1 ,2 ]
机构
[1] Univ Minho, European Inst Excellence Tissue Engn & Regenerat, I3Bs Res Inst Biomat Biodegradables & Biomimet, 3Bs Res Grp, AvePark,Parque Ciencia Tecnol,Zona Ind Gandra, P-4805017 Barco, Guimaraes, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, Braga Guimaraes, Portugal
[3] Kyung Hee Univ, Sch Dent, Dept Dent Mat, Seoul, South Korea
关键词
VOLUMETRIC MUSCLE LOSS; FIBROBLAST-GROWTH-FACTOR; SKELETAL-MUSCLE; STEM-CELLS; SATELLITE CELLS; MYOGENIC DIFFERENTIATION; ENDOTHELIAL-CELLS; FACTOR-BETA; IN-VITRO; REGENERATION;
D O I
10.1016/j.tibtech.2022.09.010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Severe skeletal muscle injuries are a lifelong trauma with limited medical solutions. Significant progress has been made in developing in vitro surrogates for treating such trauma. However, more attention is needed when translating these approaches to the clinic. In this review, we survey the potential of tissue-engineered surrogates in promoting muscle healing, by critically analyzing data from recent preclinical models. The therapeutic advantages provided by a combination of different biomaterials, cell types, and biochemical mediators are discussed. Current therapies on muscle healing are also summarized, emphasizing their main advantages and drawbacks. We also discuss previous and ongoing clinical trials as well as highlighting future directions for the field.
引用
收藏
页码:632 / 652
页数:21
相关论文
共 114 条
[1]   TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy [J].
Acharyya, Swarnali ;
Sharma, Sudarshana M. ;
Cheng, Alfred S. ;
Ladner, Katherine J. ;
He, Wei ;
Kline, William ;
Wang, Huating ;
Ostrowski, Michael C. ;
Huang, Tim H. ;
Guttridge, Denis C. .
PLOS ONE, 2010, 5 (08)
[2]   Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration [J].
Alheib, Omar ;
da Silva, Lucilia P. ;
Morais, Alain da Silva ;
Mesquita, Katia A. ;
Pirraco, Rogerio P. ;
Reis, Rui L. ;
Conrelo, Vitor M. .
ACTA BIOMATERIALIA, 2022, 143 :282-294
[3]   Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo [J].
Arsic, N ;
Zacchigna, S ;
Zentilin, L ;
Ramirez-Correa, G ;
Pattarini, L ;
Salvi, A ;
Sinagra, G ;
Giacca, M .
MOLECULAR THERAPY, 2004, 10 (05) :844-854
[4]   Tissue engineering of injectable muscle: Three-dimensional myoblast-fibrin injection in the syngeneic rat animal model [J].
Beier, Justus P. ;
Stern-Straeter, Jens ;
Foerster, Vanni T. ;
Kneser, Ulrich ;
Stark, G. Bjoern ;
Bach, Alexander D. .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2006, 118 (05) :1113-1121
[5]   The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review [J].
Blaisdell, FW .
CARDIOVASCULAR SURGERY, 2002, 10 (06) :620-630
[6]   Assessment of muscle mass and strength in mice [J].
Bonetto, Andrea ;
Andersson, Daniel C. ;
Waning, David L. .
BONEKEY REPORTS, 2015, 4
[7]   The formation of skeletal muscle: from somite to limb [J].
Buckingham, M ;
Bajard, L ;
Chang, T ;
Daubas, P ;
Hadchouel, J ;
Meilhac, S ;
Montarras, D ;
Rocancourt, D ;
Relaix, F .
JOURNAL OF ANATOMY, 2003, 202 (01) :59-68
[8]   Endogenous Electric Signaling as a Blueprint for Conductive Materials in Tissue Engineering [J].
Casella, Alena ;
Panitch, Alyssa ;
Leach, J. Kent .
BIOELECTRICITY, 2021, 3 (01) :27-41
[9]   Biomaterial-based delivery for skeletal muscle repair [J].
Cezar, Christine A. ;
Mooney, David J. .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 84 :188-197
[10]   Laminin mimetic peptide nanofibers regenerate acute muscle defect [J].
Cimenci, Cagla Eren ;
Uzunalli, Gozde ;
Uysal, Ozge ;
Yergoz, Fatih ;
Umay, Ebru Karaca ;
Guler, Mustafa O. ;
Tekinay, Ayse B. .
ACTA BIOMATERIALIA, 2017, 60 :190-200