A quantum chemical study on the anti-SARS-CoV-2 activity of TMPRSS2 inhibitors

被引:0
作者
Kondo, Akihiro [1 ]
Fujimoto, Kazuhiro J. [1 ,2 ]
Yanai, Takeshi [1 ,2 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Dept Chem, Nagoya 4648601, Japan
[2] Nagoya Univ, Inst Transformat Biomol WPI ITbM, Nagoya 4648601, Japan
基金
日本学术振兴会;
关键词
MECHANISM; ENERGIES; KINETICS; PROTEIN;
D O I
10.1039/d3cp01723k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nafamostat and camostat are known to inhibit the spike protein-mediated fusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by forming a covalent bond with the human transmembrane serine protease 2 (TMPRSS2) enzyme. Previous experiments revealed that the TMPRSS2 inhibitory activity of nafamostat surpasses that of camostat, despite their structural similarities; however, the molecular mechanism of TMPRSS2 inhibition remains elusive. Herein, we report the energy profiles of the acylation reactions of nafamostat, camostat, and a nafamostat derivative by quantum chemical calculations using a combined molecular cluster and polarizable continuum model (PCM) approach. We further discuss the physicochemical relevance of their inhibitory activity in terms of thermodynamics and kinetics. Our analysis attributes the strong inhibitory activity of nafamostat to the formation of a stable acyl intermediate and its low activation energy during acylation with TMPRSS2. The proposed approach is also promising for elucidating the molecular mechanisms of other covalent drugs.
引用
收藏
页码:20597 / 20605
页数:9
相关论文
共 50 条
[21]   Carrageenans and the Carrageenan-Echinochrome Complex as Anti-SARS-CoV-2 Agents [J].
Krylova, Natalya V. ;
Kravchenko, Anna O. ;
Likhatskaya, Galina N. ;
Iunikhina, Olga V. ;
Glazunov, Valery P. ;
Zaporozhets, Tatyana S. ;
Shchelkanov, Mikhail Y. ;
Yermak, Irina M. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (13)
[22]   Investigation of bio-active Amaryllidaceae alkaloidal small molecules as putative SARS-CoV-2 main protease and host TMPRSS2 inhibitors: interpretation by in-silico simulation study [J].
Bhowmick, Shovonlal ;
Mistri, Tapan Kumar ;
Khan, Mohammad Rizwan ;
Patil, Pritee Chunarkar ;
Busquets, Rosa ;
Ikbal, Abu Md Ashif ;
Choudhury, Ankita ;
Roy, Dilip Kumar ;
Palit, Partha ;
Saha, Achintya .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024, 42 (14) :7107-7127
[23]   Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers [J].
Temena, Mehmet Arda ;
Acar, Ahmet .
SCIENTIFIC REPORTS, 2022, 12 (01)
[24]   Intestinal Inflammation Modulates the Expression of ACE2 and TMPRSS2 and Potentially Overlaps With the Pathogenesis of SARS-CoV-2-related Disease [J].
Suarez-Farinas, Mayte ;
Tokuyama, Minami ;
Wei, Gabrielle ;
Huang, Ruiqi ;
Livanos, Alexandra ;
Jha, Divya ;
Levescot, Anais ;
Irizar, Haritz ;
Kosoy, Roman ;
Cording, Sascha ;
Wang, Wenhui ;
Losic, Bojan ;
Ungaro, Ryan C. ;
Di'Narzo, Antonio ;
Martinez-Delgado, Gustavo ;
Suprun, Maria ;
Corley, Michael J. ;
Stojmirovic, Aleksandar ;
Houten, Sander M. ;
Peters, Lauren ;
Curran, Mark ;
Brodmerkel, Carrie ;
Perrigoue, Jacqueline ;
Friedman, Joshua R. ;
Hao, Ke ;
Schadt, Eric E. ;
Zhu, Jun ;
Ko, Huaibin M. ;
Cho, Judy ;
Dubinsky, Marla C. ;
Sands, Bruce E. ;
Ndhlovu, Lishomwa ;
Cerf-Bensusan, Nadine ;
Kasarskis, Andrew ;
Colombel, Jean-Frederic ;
Harpaz, Noam ;
Argmann, Carmen ;
Mehandru, Saurabh .
GASTROENTEROLOGY, 2021, 160 (01) :287-+
[25]   Genomics-guided identification of potential modulators of SARS-CoV-2 entry proteases, TMPRSS2 and Cathepsins B/L [J].
Prasad, Kartikay ;
AlOmar, Suliman Yousef ;
Almuqri, Eman Abdullah ;
Rudayni, Hassan Ahmed ;
Kumar, Vijay .
PLOS ONE, 2021, 16 (08)
[26]   Furin and TMPRSS2 Resistant Spike Induces Robust Humoral and Cellular Immunity Against SARS-CoV-2 Lethal Infection [J].
Lin, Jhe-Jhih ;
Tien, Chih-Feng ;
Kuo, Yi-Ping ;
Lin, En-Ju ;
Tsai, Wei-Hsiang ;
Chen, Ming-Yu ;
Tsai, Pei-Ju ;
Su, Yu-Wen ;
Pathak, Nikhil ;
Yang, Jinn-Moon ;
Yu, Chia-Yi ;
Chuang, Zih-Shiuan ;
Wu, Han-Chieh ;
Tsai, Wan-Ting ;
Dai, Shih-Syong ;
Liao, Hung-Chun ;
Chai, Kit Man ;
Su, Yu-Siang ;
Chuang, Tsung-Hsien ;
Liu, Shih-Jen ;
Chen, Hsin-Wei ;
Dou, Horng-Yunn ;
Chen, Feng-Jui ;
Chen, Chiung-Tong ;
Liao, Chin-Len ;
Yu, Guann-Yi .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[27]   Systematic analysis of ACE2 and TMPRSS2 expression in salivary glands reveals underlying transmission mechanism caused by SARS-CoV-2 [J].
Song, Jukun ;
Li, Yamei ;
Huang, Xiaolin ;
Chen, Zhihong ;
Li, Yongdi ;
Liu, Chong ;
Chen, Zhu ;
Duan, Xiaofeng .
JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (11) :2556-2566
[28]   Mapping ACE2 and TMPRSS2 co-expression in human brain tissue: implications for SARS-CoV-2 neurological manifestations [J].
Gupta, Tulika ;
Kumar, Munish ;
Kaur, Ujjwal Jit ;
Rao, Asha ;
Bharti, Ranjana .
JOURNAL OF NEUROVIROLOGY, 2024, 30 (03) :316-326
[29]   Iterative In Silico Screening for Optimizing Stable Conformation of Anti-SARS-CoV-2 Nanobodies [J].
Shang, Wenyuan ;
Hu, Xiujun ;
Lin, Xiaoman ;
Li, Shangru ;
Xiong, Shuchang ;
Huang, Bingding ;
Wang, Xin .
PHARMACEUTICALS, 2024, 17 (04)
[30]   Seroprevalence of anti-SARS-CoV-2 antibodies in Japanese COVID-19 patients [J].
Hiki, Makoto ;
Tabe, Yoko ;
Ai, Tomohiko ;
Matsue, Yuya ;
Harada, Norihiro ;
Sugimoto, Kiichi ;
Matsushita, Yasushi ;
Matsushita, Masakazu ;
Wakita, Mitsuru ;
Misawa, Shigeki ;
Idei, Mayumi ;
Miida, Takashi ;
Tamura, Naoto ;
Takahashi, Kazuhisa ;
Naito, Toshio .
PLOS ONE, 2021, 16 (04)