Tutorial: integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA

被引:9
|
作者
Yang, Lin [1 ]
Wang, Jin [1 ,2 ]
Altreuter, Jennifer [1 ]
Jhaveri, Aashna [1 ]
Wong, Cheryl J. J. [1 ,3 ]
Song, Li [1 ,4 ]
Fu, Jingxin [1 ,2 ,5 ,6 ]
Taing, Len [5 ,6 ]
Bodapati, Sudheshna [1 ]
Sahu, Avinash [1 ,4 ]
Tokheim, Collin [1 ,4 ]
Zhang, Yi [1 ,4 ]
Zeng, Zexian [1 ,4 ]
Bai, Gali [1 ]
Tang, Ming [1 ]
Qiu, Xintao [5 ,6 ]
Long, Henry W. W. [5 ,6 ]
Michor, Franziska [1 ,4 ,7 ,8 ,9 ,10 ]
Liu, Yang [1 ]
Liu, X. Shirley [1 ,4 ,6 ]
机构
[1] Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02115 USA
[2] Tongji Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[3] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[5] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[6] Dana Farber Canc Inst, Ctr Funct Canc Epigenet, Boston, MA 02115 USA
[7] Broad Inst MIT & Harvard, Cambridge, MA USA
[8] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA USA
[9] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA USA
[10] Ludwig Ctr Harvard, Boston, MA USA
关键词
MICROSATELLITE INSTABILITY DETECTION; SOMATIC POINT MUTATIONS; INFILTRATING LYMPHOCYTES; COMPREHENSIVE ANALYSIS; CHECKPOINT BLOCKADE; GENE FUSIONS; R PACKAGE; CANCER; SEQ; IMMUNOTHERAPY;
D O I
10.1038/s41596-023-00841-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA-sequencing (RNA-seq) has become an increasingly cost-effective technique for molecular profiling and immune characterization of tumors. In the past decade, many computational tools have been developed to characterize tumor immunity from gene expression data. However, the analysis of large-scale RNA-seq data requires bioinformatics proficiency, large computational resources and cancer genomics and immunology knowledge. In this tutorial, we provide an overview of computational analysis of bulk RNA-seq data for immune characterization of tumors and introduce commonly used computational tools with relevance to cancer immunology and immunotherapy. These tools have diverse functions such as evaluation of expression signatures, estimation of immune infiltration, inference of the immune repertoire, prediction of immunotherapy response, neoantigen detection and microbiome quantification. We describe the RNA-seq IMmune Analysis (RIMA) pipeline integrating many of these tools to streamline RNA-seq analysis. We also developed a comprehensive and user-friendly guide in the form of a with text and video demos to assist users in analyzing bulk RNA-seq data for immune characterization at both individual sample and cohort levels by using RIMA.
引用
收藏
页码:2404 / 2414
页数:11
相关论文
共 50 条
  • [1] Tutorial: integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA
    Lin Yang
    Jin Wang
    Jennifer Altreuter
    Aashna Jhaveri
    Cheryl J. Wong
    Li Song
    Jingxin Fu
    Len Taing
    Sudheshna Bodapati
    Avinash Sahu
    Collin Tokheim
    Yi Zhang
    Zexian Zeng
    Gali Bai
    Ming Tang
    Xintao Qiu
    Henry W. Long
    Franziska Michor
    Yang Liu
    X. Shirley Liu
    Nature Protocols, 2023, 18 : 2404 - 2414
  • [2] CaSpER identifies and visualizes CNV events by integrative analysis of single-cell or bulk RNA-sequencing data
    Harmanci, Akdes Serin
    Harmanci, Arif O.
    Zhou, Xiaobo
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] CaSpER identifies and visualizes CNV events by integrative analysis of single-cell or bulk RNA-sequencing data
    Akdes Serin Harmanci
    Arif O. Harmanci
    Xiaobo Zhou
    Nature Communications, 11
  • [4] Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data
    Andrews, Tallulah S.
    Kiselev, Vladimir Yu
    McCarthy, Davis
    Hemberg, Martin
    NATURE PROTOCOLS, 2021, 16 (01) : 1 - 9
  • [5] Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data
    Tallulah S. Andrews
    Vladimir Yu Kiselev
    Davis McCarthy
    Martin Hemberg
    Nature Protocols, 2021, 16 : 1 - 9
  • [6] ESOPHAGEAL TRANSCRIPTOME IN EOSINOPHILIC ESOPHAGITIS: A META-ANALYSIS OF BULK RNA-SEQUENCING DATA
    Jacobse, Justin
    Brown, Rachel E.
    Tyree, Regina N.
    Vaezi, Michael F.
    Williams, Christopher S.
    Higginbotham, Tina
    Goettel, Jeremy A.
    Hiremath, Girish
    Choksi, Yash A.
    GASTROENTEROLOGY, 2023, 164 (06) : S367 - S367
  • [7] Phylogenomic analysis of Fundulidae (Teleostei: Cyprinodotiformes) using RNA-sequencing data
    Rodgers, Rachel
    Roach, Jennifer L.
    Reid, Noah M.
    Whitehead, Andrew
    Duvernell, David D.
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2018, 121 : 150 - 157
  • [8] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13
  • [9] GBMPurity: A machine learning tool for estimating glioblastoma tumor purity from bulk RNA-sequencing data
    Thomas, Morgan P. H.
    Ajaib, Shoaib
    Tanner, Georgette
    Bulpitt, Andrew J.
    Stead, Lucy F.
    NEURO-ONCOLOGY, 2025,
  • [10] Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data (May, 10.1007/s11060-024-04710-6, 2024)
    Shetty, Arya
    Wang, Su
    Khan, A. Basit
    English, Collin W.
    Nouri, Shervin Hosseingholi
    Magill, Stephen T.
    Raleigh, David R.
    Klisch, Tiemo J.
    Harmanci, Arif O.
    Patel, Akash J.
    Harmanci, Akdes Serin
    JOURNAL OF NEURO-ONCOLOGY, 2024, 168 (03) : 525 - 525