In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

被引:0
作者
Huu, Ha Tran [1 ]
Nguyen, Ngoc Phi [1 ]
Ngo, Vuong Hoang [1 ]
Luc, Huy Hoang [2 ]
Le, Minh Kha [3 ]
Nguyen, Minh Thu [3 ]
Le, My Loan Phung [3 ]
Kim, Hye Rim [4 ]
Kim, In Young [4 ]
Kim, Sung Jin [4 ]
Tran, Van Man [3 ]
Vo, Vien [1 ]
机构
[1] Quy Nhon Univ, Fac Nat Sci, 170 An Duong Vuong, Quy Nhon 55000, Binh Dinh, Vietnam
[2] Hanoi Natl Univ Educ, Fac Phys, 136 Xuan Thuy, Hanoi 11300, Vietnam
[3] Viet Nam Natl Univ Ho Chi Minh City, Univ Sci, Appl Phys Chem Lab, Ho Chi Minh City 70000, Vietnam
[4] Ewha Womans Univ, Dept Chem & Nanosci, Seoul 120750, South Korea
来源
BEILSTEIN JOURNAL OF NANOTECHNOLOGY | 2023年 / 14卷
关键词
Ge anode; in situ synthesis; lithium-ion batteries; magnesiothermic reduction; GERMANIUM NANOPARTICLES; ENERGY; SILICON; CARBON; STORAGE; NANOTUBES; HYBRIDS; SYSTEM; MATRIX; ROUTE;
D O I
10.3762/bjnano.14.62
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metallothermic, especially magnesiothermic, solid-state reactions have been widely applied to synthesize various materials. However, further investigations regarding the use of this method for composite syntheses are needed because of the high reactivity of magnesium. Herein, we report an in situ magnesiothermic reduction to synthesize a composite of Ge@C as an anode material for lithium-ion batteries. The obtained electrode delivered a specific capacity of 454.2 mAh & BULL;g-1 after 200 cycles at a specific current of 1000 mA & BULL;g-1. The stable electrochemical performance and good rate performance of the electrode (432.3 mAh & BULL;g-1 at a specific current of 5000 mA & BULL;g-1) are attributed to the enhancement in distribution and chemical contact between Ge nanoparticles and the biomass-based carbon matrix. A comparison with other synthesis routes has been conducted to demonstrate the effectiveness of contact formation during in situ synthesis.
引用
收藏
页码:751 / 761
页数:11
相关论文
共 50 条
  • [31] Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes
    Li, Yankai
    Liu, Wenbo
    Long, Zhi
    Xu, Pengyuan
    Sun, Yang
    Zhang, Xiaokang
    Ma, Shuhua
    Jiang, Ning
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (49) : 12912 - 12919
  • [32] Preparation of core-shell Si/C/graphene composite for high-performance lithium-ion battery anodes
    Zhou, Xiaoming
    Liu, Yang
    SYNTHETIC METALS, 2024, 309
  • [33] Porous carbon-coated silicon composites for high performance lithium-ion batterie anode
    Wang, Duo
    Kong, Lingyu
    Zhang, Fang
    Liu, Aimin
    Huang, Haitao
    Liu, Yubao
    Shi, Zhongning
    APPLIED SURFACE SCIENCE, 2024, 661
  • [34] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Hyokyeong
    Choi, Jiwoo
    Bae, Inseong
    Son, Hayoung
    Choi, Junyoung
    Lee, Jinyong
    Kim, Jiwoong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [35] MnO@Carbon Core-Shell Nanowires as Stable High-Performance Anodes for Lithium-Ion Batteries
    Li, Xiaowei
    Xiong, Shenglin
    Li, Jingfa
    Liang, Xin
    Wang, Jiazhao
    Bai, Jing
    Qian, Yitai
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (34) : 11310 - 11319
  • [36] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [37] Synthesis of Porous Si/C Composite Nanosheets from Vermiculite with a Hierarchical Structure as a High-Performance Anode for Lithium-Ion Battery
    Huang, Xi
    Cen, Dingcheng
    Wei, Run
    Fan, Hualin
    Bao, Zhihao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) : 26854 - 26862
  • [38] Glucose assisted synthesis of 1T-MoS 2/C composite anode for high-performance lithium-ion batteries
    Zhu, Wenjun
    Shi, Chengfei
    Wang, Yuanyu
    Hu, Yuehui
    Liu, Keli
    DIAMOND AND RELATED MATERIALS, 2022, 130
  • [39] Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes
    Yi, Zheng
    Han, Qigang
    Zan, Ping
    Wu, Yaoming
    Cheng, Yong
    Wang, Limin
    JOURNAL OF POWER SOURCES, 2016, 331 : 16 - 21
  • [40] In situ growth of β-FeOOH on hierarchically porous carbon as anodes for high-performance lithium-ion batteries
    Imtiaz, Muhammad
    Chen, Zhixin
    Zhu, Chengling
    Pan, Hui
    Zada, Imran
    Li, Yao
    Bokhari, Syeda Wishal
    Luan, RuiYing
    Nigar, Salma
    Zhu, Shenmin
    ELECTROCHIMICA ACTA, 2018, 283 : 401 - 409