Lower-ionosphere electron density and effective recombination coefficients from multi-instrument space observations and ground VLF measurements during solar flares

被引:6
作者
Zigman, Vida [1 ]
Dominique, Marie [2 ]
Grubor, Davorka [3 ]
Rodger, Craig J. [4 ]
Clilverd, Mark A. [5 ]
机构
[1] Univ Nova Gorica, Vipavska Cesta 13, Nova Gorica 5000, Slovenia
[2] Royal Observ Belgium, 3 Ave Circulaire, B-1180 Brussels, Belgium
[3] Univ Belgrade, Fac Min & Geol, Phys Cathedra, Djusina 7, Belgrade 11000, Serbia
[4] Univ Otago, Dept Phys, POB 56, Dunedin 9054, New Zealand
[5] British Antarctic Survey UKRI NERC, Madingley Rd, Cambridge CB3 0ET, England
关键词
Solar flares; Solar spectral irradiance; Ionosphere; VLF; Time delay; Electron density; EARTHS LOWER IONOSPHERE; D-REGION ENHANCEMENTS; AMPLITUDE; IONIZATION; ABSORPTION; CHIANTI; EVENT; PHASE; RATES;
D O I
10.1016/j.jastp.2023.106074
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new model to predict the electron density and effective recombination coefficient of the lower ionosphere under solar flare conditions is presented. This model relies on space-borne solar irradiance measurements in coincidence with ground recorded active transmissions of Very Low Frequency (VLF), (<30 kHz) signals. Use is made of the irradiance measured by broad-band radiometers onboard the satellites: GOES, SDO, and PROBA2. Measurements are made over succeeding and partly overlapping wavelength intervals of the instrument band-pass ranges altogether covering the range 0.1-20 nm. The aim is to determine the effectiveness of the particular instrument bandpass in producing changes in the ionization of the lower ionosphere (D-region) during solar X-ray flares. Ionization efficiency is evaluated using modelled Solar Spectral Irradiance for each flare separately and for each instrument as a function of its bandpass.The new model is based on coupling of the continuity equation with the Appleton relation and uses the concept of time delay - the time lag of the extreme VLF amplitude and phase behind the flare irradiance maximum. The solution of the continuity equation predicts the electron density time -height profile for 55-100 km altitude.An analysis of M to X class flares shows the flare-enhanced electron densities due to a particular ionizing wavelength domain are in good agreement for the case where irradiance is taken over the bandpass of (1) either GOES (0.1-0.8 nm) or SDO/ESP (0.1-7 nm) for up to 90 km (2) either SDO/ESP or PROBA2/LYRA (1-2 +6-20 nm) at heights above 90 km. The results agree within 22% for heights up to 90 km, and differ by at most a factor of 2 for heights above 90 km. Remarkable agreement is shown between measured and evaluated time delay; discrepancies are generally less than 8%. The effective recombination coefficient is deduced from the model itself and is found to be consistent with other independent estimates.
引用
收藏
页数:15
相关论文
共 64 条
[11]   Flare Irradiance Spectral Model (FISM): Flare component algorithms and results [J].
Chamberlin, Phillip C. ;
Woods, Thomas N. ;
Eparvier, Francis G. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2008, 6 (05)
[12]   Remote sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network [J].
Clilverd, Mark A. ;
Rodger, Craig J. ;
Thomson, Neil R. ;
Brundell, James B. ;
Ulich, Thomas ;
Lichtenberger, Janos ;
Cobbett, Neil ;
Collier, Andrew B. ;
Menk, Frederick W. ;
Seppala, Annika ;
Verronen, Pekka T. ;
Turunen, Esa .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2009, 7
[13]   A localised co-rotating auroral absorption event observed near noon using imaging riometer and EISCAT [J].
Collis, PN ;
Hargreaves, JK ;
White, GP .
ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1996, 14 (12) :1305-1316
[14]   Modeling electromagnetic propagation in the earth-ionosphere waveguide [J].
Cummer, SA .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (09) :1420-1429
[15]   CHIANTI - an atomic database for emission lines .1. Wavelengths greater than 50 angstrom [J].
Dere, KP ;
Landi, E ;
Mason, HE ;
Fossi, BCM ;
Young, PR .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1997, 125 (01) :149-173
[16]   TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15 [J].
Dolla, L. ;
Marque, C. ;
Seaton, D. B. ;
Van Doorsselaere, T. ;
Dominique, M. ;
Berghmans, D. ;
Cabanas, C. ;
De Groof, A. ;
Schmutz, W. ;
Verdini, A. ;
West, M. J. ;
Zender, J. ;
Zhukov, A. N. .
ASTROPHYSICAL JOURNAL LETTERS, 2012, 749 (01)
[17]   The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance [J].
Dominique, M. ;
Hochedez, J. -F. ;
Schmutz, W. ;
Dammasch, I. E. ;
Shapiro, A. I. ;
Kretzschmar, M. ;
Zhukov, A. N. ;
Gillotay, D. ;
Stockman, Y. ;
BenMoussa, A. .
SOLAR PHYSICS, 2013, 286 (01) :21-42
[18]   The Hotel Payload 2 campaign: Overview of NO, O and electron density measurements in the upper mesosphere and lower thermosphere [J].
Enell, Carl-Fredrik ;
Hedin, Jonas ;
Stegman, Jacek ;
Witt, Georg ;
Friedrich, Martin ;
Singer, Werner ;
Baumgarten, Gerd ;
Kaifler, Bernd ;
Hoppe, Ulf-Peter ;
Gustavsson, Bjoern ;
Brandstrom, Urban ;
Khaplanov, Mikhail ;
Kero, Antti ;
Ulich, Thomas ;
Turunen, Esa .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (14-15) :2228-2236
[19]  
Ferguson J.A., 1998, 3030 SPAWAR
[20]   Empirical recombination rates in the lower ionosphere [J].
Friedrich, M ;
Torkar, KM ;
Steiner, RJ .
IRI: QUANTIFYING IONOSPERIC VARIABILITY, 2004, 34 (09) :1937-1942