Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid

被引:2
作者
Underwood, Andrew P. C. [1 ,2 ]
Groszek, Andrew J. [3 ,4 ]
Yu, Xiaoquan [1 ,2 ,5 ]
Blakie, P. B. [1 ,2 ]
Williamson, L. A. [3 ]
机构
[1] Univ Otago, Ctr Quantum Sci, Dept Phys, Dunedin, New Zealand
[2] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin, New Zealand
[3] Univ Queensland, ARC Ctr Excellence Engn Quantum Syst, Sch Math & Phys, St Lucia, Qld 4072, Australia
[4] Univ Queensland, ARC Ctr Excellence Future Low Energy Elect Technol, Sch Math & Phys, St Lucia, Qld 4072, Australia
[5] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
LONG-RANGE ORDER; HEISENBERG-ANTIFERROMAGNET; TRIANGULAR LATTICE; PHASE-TRANSITIONS; BOSE; DYNAMICS; VORTEX;
D O I
10.1103/PhysRevResearch.5.L012045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A two-dimensional spin-1 Bose gas exhibits two Berezinskii-Kosterlitz-Thouless (BKT) transitions in the easy-plane ferromagnetic phase. The higher-temperature transition is associated with superfluidity of the mass current determined predominantly by a single spin component. The lower-temperature transition is associated with superfluidity of the axial spin current, quasi-long-range order of the transverse spin density, and binding of polar-core spin vortices (PCVs). Above the spin BKT temperature, the component circulations that make up each PCV spatially separate, suggesting possible deconfinement analogous to quark deconfinement in high-energy physics. Intercomponent interactions give rise to superfluid drag between the spin components, which we calculate analytically at zero temperature. We present the mass and spin superfluid phase diagram as a function of quadratic Zeeman energy q. At q = 0 the system is in an isotropic spin phase with SO(3) symmetry. Here the fluid response exhibits a system size dependence, suggesting the absence of a BKT transition. Despite this, for finite systems the decay of spin correlations changes from exponential to algebraic as the temperature is decreased.
引用
收藏
页数:6
相关论文
共 75 条
  • [1] Skyrmion physics in Bose-Einstein ferromagnets
    Al Khawaja, U
    Stoof, HTC
    [J]. PHYSICAL REVIEW A, 2001, 64 (04): : 14
  • [2] ANDREEV AF, 1975, SOV PHYS JETP, V42, P164
  • [3] Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate
    Anquez, M.
    Robbins, B. A.
    Bharath, H. M.
    Boguslawski, M.
    Hoang, T. M.
    Chapman, M. S.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [4] Prethermalization in quenched spinor condensates
    Barnett, Ryan
    Polkovnikov, Anatoli
    Vengalattore, Mukund
    [J]. PHYSICAL REVIEW A, 2011, 84 (02):
  • [5] BAYM G, 1969, MATH METHODS SOLID S, P121
  • [6] BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
  • [7] Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques
    Blakie, P. B.
    Bradley, A. S.
    Davis, M. J.
    Ballagh, R. J.
    Gardiner, C. W.
    [J]. ADVANCES IN PHYSICS, 2008, 57 (05) : 363 - 455
  • [8] Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation
    Bradley, A. S.
    Gardiner, C. W.
    Davis, M. J.
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [9] Stochastic projected Gross-Pitaevskii equation for spinor and multicomponent condensates
    Bradley, Ashton S.
    Blakie, P. Blair
    [J]. PHYSICAL REVIEW A, 2014, 90 (02):
  • [10] The quest for the quark-gluon plasma
    Braun-Munzinger, Peter
    Stachel, Johanna
    [J]. NATURE, 2007, 448 (7151) : 302 - 309