Multipartite-entanglement generation in coupled microcavity arrays

被引:4
作者
Bostelmann, Marc [1 ]
Wilksen, Steffen [1 ]
Lohof, Frederik [1 ]
Gies, Christopher [1 ]
机构
[1] Univ Bremen, Inst Theoret Phys, D-28359 Bremen, Germany
关键词
QUANTUM-NETWORK;
D O I
10.1103/PhysRevA.107.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider photonic arrays made from quantum emitters in optically coupled microcavities as a platform for entanglement generation. These offer a large degree of tunability with the possibility of site-selective optical excitation. Coherent pumping is considered to drive transitions between vacuum and entangled target states, both in a time-dependent manner and in a quantum bath engineering approach to create entanglement in the steady state. We demonstrate a numerical scheme that allows one to generalize the determination of excitation parameters to larger array sizes and different classes of entangled states. This study is a step towards using coupled-cavity arrays as a hardware platform in novel quantum-photonic applications in quantum computing and quantum machine learning.
引用
收藏
页数:15
相关论文
共 54 条
[21]   Strong photon nonlinearities and photonic mott insulators [J].
Hartmann, Michael J. ;
Plenio, Martin B. .
PHYSICAL REVIEW LETTERS, 2007, 99 (10)
[22]   Purification and switching protocols for dissipatively stabilized entangled qubit states [J].
Hein, Sven M. ;
Aron, Camille ;
Tureci, Hakan E. .
PHYSICAL REVIEW A, 2016, 93 (06)
[23]   Developing a photonic hardware platform for brain-inspired computing based on 5 x 5 VCSEL arrays [J].
Heuser, T. ;
Pflueger, M. ;
Fischer, I ;
Lott, J. A. ;
Brunner, D. ;
Reitzenstein, S. .
JOURNAL OF PHYSICS-PHOTONICS, 2020, 2 (04)
[24]   Fabrication of dense diametel-tuned quantum dot micropillar arrays for applications in photonic information processing [J].
Heuser, Tobias ;
Grosse, Jan ;
Kaganskiy, Arsenty ;
Brunner, Daniel ;
Reitzenstein, Stephan .
APL PHOTONICS, 2018, 3 (11)
[25]  
Hucul D, 2015, NAT PHYS, V11, P37, DOI [10.1038/NPHYS3150, 10.1038/nphys3150]
[26]   Deterministic delivery of remote entanglement on a quantum network [J].
Humphreys, Peter C. ;
Kalb, Norbert ;
Morits, Jaco P. J. ;
Schouten, Raymond N. ;
Vermeulen, Raymond F. L. ;
Twitchen, Daniel J. ;
Markham, Matthew ;
Hanson, Ronald .
NATURE, 2018, 558 (7709) :268-+
[27]   Efficient linear optical generation of a multipartite W state via a quantum eraser [J].
Kim, Yong-Su ;
Cho, Young-Wook ;
Lim, Hyang-Tag ;
Han, Sang-Wook .
PHYSICAL REVIEW A, 2020, 101 (02)
[28]   Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits [J].
Kimchi-Schwartz, M. E. ;
Martin, L. ;
Flurin, E. ;
Aron, C. ;
Kulkarni, M. ;
Tureci, H. E. ;
Siddiqi, I. .
PHYSICAL REVIEW LETTERS, 2016, 116 (24)
[29]   Efficient steady-state-entanglement generation in strongly driven coupled qubits [J].
Laura Gramajo, Ana ;
Dominguez, Daniel ;
Jose Sanchez, Maria .
PHYSICAL REVIEW A, 2021, 104 (03)
[30]   Environment mediated multipartite and multidimensional entanglement [J].
Lee, Chee Kong ;
Najafabadi, Mojdeh S. ;
Schumayer, Daniel ;
Kwek, Leong Chuan ;
Hutchinson, David A. W. .
SCIENTIFIC REPORTS, 2019, 9 (1)