Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data

被引:10
作者
Liu, Zipeng [1 ,2 ,3 ]
Qin, Yiming [1 ,2 ,3 ]
Wu, Tian [1 ]
Tubbs, Justin D. [1 ]
Baum, Larry [1 ,2 ,3 ]
Mak, Timothy Shin Heng [3 ]
Li, Miaoxin [1 ,4 ,5 ]
Zhang, Yan Dora [3 ,6 ]
Sham, Pak Chung [1 ,2 ,3 ]
机构
[1] Univ Hong Kong, Li Ka Shing Fac Med, Dept Psychiat, Hong Kong, Peoples R China
[2] Univ Hong Kong, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[3] Univ Hong Kong, Li Ka Shing Fac Med, Ctr Panor Sci, Hong Kong, Peoples R China
[4] Sun Yat Sen Univ, Ctr Precis Med, Zhongshan Sch Med, Guangzhou, Peoples R China
[5] Minist Educ, Key Lab Trop Dis Control SYSU, Guangzhou, Peoples R China
[6] Univ Hong Kong, Fac Sci, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
RISK;
D O I
10.1038/s41467-023-36490-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mendelian randomization using GWAS summary statistics has become a popular method to infer causal relationships across complex diseases. However, the widespread pleiotropy observed in GWAS has made the selection of valid instrumental variables problematic, leading to possible violations of Mendelian randomization assumptions and thus potentially invalid inferences concerning causation. Furthermore, current MR methods can examine causation in only one direction, so that two separate analyses are required for bi-directional analysis. In this study, we propose a ststistical framework, MRCI (Mixture model Reciprocal Causation Inference), to estimate reciprocal causation between two phenotypes simultaneously using the genome-scale summary statistics of the two phenotypes and reference linkage disequilibrium information. Simulation studies, including strong correlated pleiotropy, showed that MRCI obtained nearly unbiased estimates of causation in both directions, and correct Type I error rates under the null hypothesis. In applications to real GWAS data, MRCI detected significant bi-directional and uni-directional causal influences between common diseases and putative risk factors. Mendelian randomization methods are prone to produce false positive results when assumptions are violated. Here, the authors propose a statistical model that offers good power to detect causation between traits while controlling the false positive rate.
引用
收藏
页数:12
相关论文
共 44 条
[31]   A comprehensive evaluation of methods for Mendelian randomization using realistic simulations and an analysis of 38 biomarkers for risk of type 2 diabetes [J].
Qi, Guanghao ;
Chatterjee, Nilanjan .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 (04) :1335-1349
[32]   Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects [J].
Qi, Guanghao ;
Chatterjee, Nilanjan .
NATURE COMMUNICATIONS, 2019, 10 (1)
[33]   Hypertriglyceridaemia and risk of coronary artery disease [J].
Reiner, Zeljko .
NATURE REVIEWS CARDIOLOGY, 2017, 14 (07) :401-411
[34]   Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort [J].
Toulopoulou, T. ;
van Haren, N. ;
Zhang, X. ;
Sham, P. C. ;
Cherny, S. S. ;
Campbell, D. D. ;
Picchioni, M. ;
Murray, R. ;
Boomsma, D. I. ;
Pol, H. H. ;
Brouwer, R. ;
Schnack, H. ;
Fananas, L. ;
Sauer, H. ;
Nenadic, I. ;
Weisbrod, M. ;
Cannon, T. D. ;
Kahn, R. S. .
MOLECULAR PSYCHIATRY, 2015, 20 (11) :1386-1396
[35]  
Varin C, 2011, STAT SINICA, V21, P5
[36]   Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases [J].
Verbanck, Marie ;
Chen, Chia-Yen ;
Neale, Benjamin ;
Do, Ron .
NATURE GENETICS, 2018, 50 (05) :693-+
[37]   Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors [J].
Warrington, Nicole M. ;
Beaumont, Robin N. ;
Horikoshi, Momoko ;
Day, Felix R. ;
Helgeland, Oyvind ;
Laurin, Charles ;
Bacelis, Jonas ;
Peng, Shouneng ;
Hao, Ke ;
Feenstra, Bjarke ;
Wood, Andrew R. ;
Mahajan, Anubha ;
Tyrrell, Jessica ;
Robertson, Neil R. ;
Rayner, N. William ;
Qiao, Zhen ;
Moen, Gunn-Helen ;
Vaudel, Marc ;
Marsit, Carmen J. ;
Chen, Jia ;
Nodzenski, Michael ;
Schnurr, Theresia M. ;
Zafarmand, Mohammad H. ;
Bradfield, Jonathan P. ;
Grarup, Niels ;
Kooijman, Marjolein N. ;
Li-Gao, Ruifang ;
Geller, Frank ;
Ahluwalia, Tarunveer S. ;
Paternoster, Lavinia ;
Rueedi, Rico ;
Huikari, Ville ;
Hottenga, Jouke-Jan ;
Lyytikainen, Leo-Pekka ;
Cavadino, Alana ;
Metrustry, Sarah ;
Cousminer, Diana L. ;
Wu, Ying ;
Thiering, Elisabeth ;
Wang, Carol A. ;
Have, Christian T. ;
Vilor-Tejedor, Natalia ;
Joshi, Peter K. ;
Painter, Jodie N. ;
Ntalla, Ioanna ;
Myhre, Ronny ;
Pitkanen, Niina ;
van Leeuwen, Elisabeth M. ;
Joro, Raimo ;
Lagou, Vasiliki .
NATURE GENETICS, 2019, 51 (05) :804-+
[38]  
WILLER CJ, 2013, NAT GENET, V45, P1274, DOI DOI 10.1038/NG.2797
[39]   On the Transformation of Genetic Effect Size from Logit to Liability Scale [J].
Wu, Tian ;
Sham, Pak Chung .
BEHAVIOR GENETICS, 2021, 51 (03) :215-222
[40]   GCTA: A Tool for Genome-wide Complex Trait Analysis [J].
Yang, Jian ;
Lee, S. Hong ;
Goddard, Michael E. ;
Visscher, Peter M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 88 (01) :76-82