Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data

被引:10
作者
Liu, Zipeng [1 ,2 ,3 ]
Qin, Yiming [1 ,2 ,3 ]
Wu, Tian [1 ]
Tubbs, Justin D. [1 ]
Baum, Larry [1 ,2 ,3 ]
Mak, Timothy Shin Heng [3 ]
Li, Miaoxin [1 ,4 ,5 ]
Zhang, Yan Dora [3 ,6 ]
Sham, Pak Chung [1 ,2 ,3 ]
机构
[1] Univ Hong Kong, Li Ka Shing Fac Med, Dept Psychiat, Hong Kong, Peoples R China
[2] Univ Hong Kong, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[3] Univ Hong Kong, Li Ka Shing Fac Med, Ctr Panor Sci, Hong Kong, Peoples R China
[4] Sun Yat Sen Univ, Ctr Precis Med, Zhongshan Sch Med, Guangzhou, Peoples R China
[5] Minist Educ, Key Lab Trop Dis Control SYSU, Guangzhou, Peoples R China
[6] Univ Hong Kong, Fac Sci, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
RISK;
D O I
10.1038/s41467-023-36490-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mendelian randomization using GWAS summary statistics has become a popular method to infer causal relationships across complex diseases. However, the widespread pleiotropy observed in GWAS has made the selection of valid instrumental variables problematic, leading to possible violations of Mendelian randomization assumptions and thus potentially invalid inferences concerning causation. Furthermore, current MR methods can examine causation in only one direction, so that two separate analyses are required for bi-directional analysis. In this study, we propose a ststistical framework, MRCI (Mixture model Reciprocal Causation Inference), to estimate reciprocal causation between two phenotypes simultaneously using the genome-scale summary statistics of the two phenotypes and reference linkage disequilibrium information. Simulation studies, including strong correlated pleiotropy, showed that MRCI obtained nearly unbiased estimates of causation in both directions, and correct Type I error rates under the null hypothesis. In applications to real GWAS data, MRCI detected significant bi-directional and uni-directional causal influences between common diseases and putative risk factors. Mendelian randomization methods are prone to produce false positive results when assumptions are violated. Here, the authors propose a statistical model that offers good power to detect causation between traits while controlling the false positive rate.
引用
收藏
页数:12
相关论文
共 44 条
[2]   Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications [J].
Bhupathiraju, Shilpa N. ;
Hu, Frank B. .
CIRCULATION RESEARCH, 2016, 118 (11) :1723-1735
[3]   Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator [J].
Bowden, Jack ;
Smith, George Davey ;
Haycock, Philip C. ;
Burgess, Stephen .
GENETIC EPIDEMIOLOGY, 2016, 40 (04) :304-314
[4]   Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J].
Bowden, Jack ;
Smith, George Davey ;
Burgess, Stephen .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) :512-525
[5]   The Science of Obesity Management: An Endocrine Society Scientific Statement [J].
Bray, George A. ;
Heisel, William E. ;
Afshin, Ashkan ;
Jensen, Michael D. ;
Dietz, William H. ;
Long, Michael ;
Kushner, Robert F. ;
Daniels, Stephen R. ;
Wadden, Thomas A. ;
Tsai, Adam G. ;
Hu, Frank B. ;
Jakicic, John M. ;
Ryan, Donna H. ;
Wolfe, Bruce M. ;
Inge, Thomas H. .
ENDOCRINE REVIEWS, 2018, 39 (02) :79-132
[6]   Model selection: An integral part of inference [J].
Buckland, ST ;
Burnham, KP ;
Augustin, NH .
BIOMETRICS, 1997, 53 (02) :603-618
[7]   An atlas of genetic correlations across human diseases and traits [J].
Bulik-Sullivan, Brendan ;
Finucane, Hilary K. ;
Anttila, Verneri ;
Gusev, Alexander ;
Day, Felix R. ;
Loh, Po-Ru ;
Duncan, Laramie ;
Perry, John R. B. ;
Patterson, Nick ;
Robinson, Elise B. ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (11) :1236-+
[8]  
Burgess Stephen, 2019, Wellcome Open Res, V4, P186, DOI 10.12688/wellcomeopenres.15555.3
[9]   Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data [J].
Burgess, Stephen ;
Butterworth, Adam ;
Thompson, Simon G. .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :658-665
[10]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4