Growth of 2-inch diamond films on 4H-SiC substrate by microwave plasma CVD for enhanced thermal performance

被引:13
作者
Hu, Xiufei [1 ,2 ]
Li, Ming [1 ,2 ]
Wang, Yingnan [1 ,2 ]
Peng, Yan [1 ,2 ]
Tang, Gongbin [1 ,2 ]
Wang, Xiwei [1 ,2 ]
Li, Bin [1 ,2 ]
Yang, Yiqiu [1 ,2 ]
Xu, Mingsheng [1 ,2 ]
Xu, Xiangang [1 ,2 ]
Han, Jisheng [1 ,2 ]
Cheong, Kuan Yew [3 ]
机构
[1] Shandong Univ, Inst Novel Semicond, Jinan 250100, Peoples R China
[2] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[3] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Nibong Tebal 14300, Pulau Pinang, Malaysia
关键词
Diamond-SiC composite substrates; High uniformity; Thermal conductivity; Coefficient of thermal expansion; SILICON-CARBIDE; EXPANSION BEHAVIOR; INTRINSIC STRESS; COMPOSITES; CONDUCTIVITY; MICROSTRUCTURE; NUCLEATION; DEPOSITION; PARTICLES; TRANSPORT;
D O I
10.1016/j.vacuum.2023.111895
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report a novel method of producing composite substrates by growing diamond films on a 4H-SiC substrate by microwave plasma chemical vapor deposition to enhance the thermal management for thermal diffusion ap-plications in GaN-based RF power devices. Morphology, grain orientation and structure of the diamond films were characterized by scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and Raman spectroscopy. The diamond films were uniform and compact, without voids and gaps observed via cross-sectional view of microscopy, and without any graphite phase and impurity peak. Thermal conductivity (TC) of the diamond-SiC composite substrates was simulated and calculated. Results indicate that the TC of the com-posite substrates is up to 512.02 +/- 6.37 W m- 1 K-1 when the SiC thickness is 500 mu m, which is 1.53 +/- 0.02 times of the pure SiC substrate, and this high TC increases to 1171.13 +/- 67.23 W m- 1 K-1 after the 4H-SiC substrate is thinned down to 50 mu m. The coefficient of thermal expansion (CTE) of the composite substrates can be engi-neered by changing the thickness of SiC substrate.
引用
收藏
页数:11
相关论文
共 58 条
  • [1] High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application
    Abyzov, Andrey M.
    Kidalov, Sergey V.
    Shakhov, Fedor M.
    [J]. APPLIED THERMAL ENGINEERING, 2012, 48 : 72 - 80
  • [2] The 2018 GaN power electronics roadmap
    Amano, H.
    Baines, Y.
    Beam, E.
    Borga, Matteo
    Bouchet, T.
    Chalker, Paul R.
    Charles, M.
    Chen, Kevin J.
    Chowdhury, Nadim
    Chu, Rongming
    De Santi, Carlo
    De Souza, Maria Merlyne
    Decoutere, Stefaan
    Di Cioccio, L.
    Eckardt, Bernd
    Egawa, Takashi
    Fay, P.
    Freedsman, Joseph J.
    Guido, L.
    Haeberlen, Oliver
    Haynes, Geoff
    Heckel, Thomas
    Hemakumara, Dilini
    Houston, Peter
    Hu, Jie
    Hua, Mengyuan
    Huang, Qingyun
    Huang, Alex
    Jiang, Sheng
    Kawai, H.
    Kinzer, Dan
    Kuball, Martin
    Kumar, Ashwani
    Lee, Kean Boon
    Li, Xu
    Marcon, Denis
    Maerz, Martin
    McCarthy, R.
    Meneghesso, Gaudenzio
    Meneghini, Matteo
    Morvan, E.
    Nakajima, A.
    Narayanan, E. M. S.
    Oliver, Stephen
    Palacios, Tomas
    Piedra, Daniel
    Plissonnier, M.
    Reddy, R.
    Sun, Min
    Thayne, Iain
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (16)
  • [3] The effect of substrate holder size on the electric field and discharge plasma on diamond-film formation at high deposition rates during MPCVD
    An, Kang
    Chen, Liangxian
    Liu, Jinlong
    Zhao, Yun
    Yan, Xiongbo
    Hua, Chenyi
    Guo, Jianchao
    Wei, Junjun
    Hei, Lifu
    Li, Chengming
    Lu, Fanxiu
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (09)
  • [4] Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond
    Anaya, J.
    Bai, T.
    Wang, Y.
    Li, C.
    Goorsky, M.
    Bougher, T. L.
    Yates, L.
    Cheng, Z.
    Graham, C. S.
    Hobart, K. D.
    Feygelson, T. I.
    Tadjer, M. J.
    Anderson, T. J.
    Pate, B. B.
    Kuball, M.
    [J]. ACTA MATERIALIA, 2017, 139 : 215 - 225
  • [5] Large area deposition of ⟨100⟩-textured diamond films by a 60-kW microwave plasma CVD reactor
    Ando, Y
    Yokota, Y
    Tachibana, T
    Watanabe, A
    Nishibayashi, Y
    Kobashi, K
    Hirao, T
    Oura, K
    [J]. DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) : 596 - 600
  • [6] Embedded Cooling for Wide Bandgap Power Amplifiers: A Review
    Bar-Cohen, A.
    Maurer, J. J.
    Altman, D. H.
    [J]. JOURNAL OF ELECTRONIC PACKAGING, 2019, 141 (04)
  • [7] RAMAN AND PHOTOLUMINESCENCE ANALYSIS OF STRESS STATE AND IMPURITY DISTRIBUTION IN DIAMOND THIN-FILMS
    BERGMAN, L
    NEMANICH, RJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1995, 78 (11) : 6709 - 6719
  • [8] Continuous-wave room-temperature diamond maser
    Breeze, Jonathan D.
    Salvadori, Enrico
    Sathian, Juna
    Alford, Neil McN.
    Kay, Christopher W. M.
    [J]. NATURE, 2018, 555 (7697) : 493 - +
  • [9] THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD
    CAHILL, DG
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) : 802 - 808
  • [10] Castelletto S, 2014, NAT MATER, V13, P151, DOI [10.1038/nmat3806, 10.1038/NMAT3806]