Incorporation of ?-MnO2 Nanoflowers into Zinc-Terephthalate Metal-Organic Frameworks for High-Performance Asymmetric Supercapacitors

被引:17
作者
Chettiannan, Balaji [1 ]
Srinivasan, Arun Kumar [1 ]
Arumugam, Gowdhaman [1 ]
Shajahan, Shanavas [2 ]
Abu Haija, Mohammad [3 ]
Rajendran, Ramesh [1 ]
机构
[1] Periyar Univ, Dept Phys, Salem 636011, Tamil Nadu, India
[2] Khalifa Univ, Dept Chem, Abu Dhabi 127788, U Arab Emirates
[3] Khalifa Univ Sci & Technol, Ctr Catalysis & Separat, Abu Dhabi 127788, U Arab Emirates
来源
ACS OMEGA | 2023年
关键词
ELECTRODE MATERIAL; CARBON; MNO2; COMPOSITE; CAPACITANCE; ALPHA-MNO2; NANOSTRUCTURES; EVOLUTION; NANORODS; MOFS;
D O I
10.1021/acsomega.2c07808
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, we report the synthesis of alpha-MnO2 nanoflower-incorporated zinc-terephthalate MOFs (MnO2@Zn-MOFs) via the conventional solution phase synthesis technique as an electrode material for supercapacitor applications. The material was characterized by powder-X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photo-electron spectroscopy techniques. The prepared electrode material exhibited a specific capacitance of 880.58 F g-1 at 5 A g-1, which is higher than the pure Zn-BDC (610.83 F g-1) and pure alpha-MnO2 (541.69 F g-1). Also, it showed a 94% capacitance retention of its initial value after 10,000 cycles at 10 A g-1. The improved performance is attributed to the increased number of reactive sites and improved redox activity due to MnO2 inclusion. Moreover, an asymmetric supercapacitor assembled using MnO2@Zn-MOF as the anode and carbon black as the cathode delivered a specific capacitance of 160 F g-1 at 3 A g-1 with a high energy density of 40.68 W h kg-1 at a power density of 20.24 kW kg-1 with an operating potential of 0-1.35 V. The ASC also exhibited a good cycle stability of 90% of its initial capacitance.
引用
收藏
页码:6982 / 6993
页数:12
相关论文
共 85 条
[1]  
Agudosi E. S., 2020, Sci. Rep, V10, P1, DOI DOI 10.1038/S41598-019-56847-4
[2]   Review of energy storage services, applications, limitations, and benefits [J].
Al Shaqsi, Ahmed Zayed ;
Sopian, Kamaruzzaman ;
Al-Hinai, Amer .
ENERGY REPORTS, 2020, 6 :288-306
[3]   Flexible Solid-State Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Encapsulated Ternary Metal-Nitrides with Ultralong Cycle Life [J].
Balamurugan, Jayaraman ;
Thanh Tuan Nguyen ;
Aravindan, Vanchiappan ;
Kim, Nam Hoon ;
Lee, Joong Hee .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (44)
[4]   Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors [J].
Balamurugan, Jayaraman ;
Tran Duy Thanh ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9555-9565
[5]   Electrochemical Capacitance of Ni-Doped Metal Organic Framework and Reduced Graphene Oxide Composites: More than the Sum of Its Parts [J].
Banerjee, Parama Chakraborty ;
Lobo, Derrek E. ;
Middag, Rick ;
Ng, Woo Kan ;
Shaibani, Mahdokht E. ;
Majumder, Mainak .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (06) :3655-3664
[6]   Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J].
Banerjee, Rahul ;
Furukawa, Hiroyasu ;
Britt, David ;
Knobler, Carolyn ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3875-+
[7]   Porous MgCo2O4 nanoflakes serve as electrode materials for hybrid supercapacitors with excellent performance [J].
Bao, Enhui ;
Ren, Xianglin ;
Wu, Runze ;
Liu, Xiaohong ;
Chen, Huiyu ;
Li, Yi ;
Xu, Chunju .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 625 :925-935
[8]   Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices [J].
Baumann, Avery E. ;
Burns, David A. ;
Liu, Bingqian ;
Thoi, V. Sara .
COMMUNICATIONS CHEMISTRY, 2019, 2 (1)
[9]   Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications [J].
Bhujun, Bhamini ;
Tan, Michelle T. T. ;
Shanmugam, Anandan S. .
RESULTS IN PHYSICS, 2017, 7 :345-353
[10]  
Chen H., 2023, INT J HYDROGEN ENERG, V657