SOLVABILITY OF THE MOORE-GIBSON-THOMPSON EQUATION WITH VISCOELASTIC MEMORY TYPE II AND INTEGRAL CONDITION

被引:4
作者
Boulaaras, Salah [1 ]
Choucha, Abdelbaki [2 ,3 ]
Ouchenane, Djamel [4 ]
Abdalla, Mohamed [5 ,6 ]
Vazquez, Aldo Jonathan Munoz [7 ]
机构
[1] Qassim Univ, Coll Sci & Arts ArRass, Dept Math, Buraydah, Saudi Arabia
[2] Univ El Oued, Fac Exact Sci, Dept Math, El Oued, Algeria
[3] Amar Teleji Laghouat Univ, Fac Sci, Dept Mat Sci, Laghouat, Algeria
[4] Amar Teleji Laghouat Univ, Fac Sci, Dept Math, Laghouat, Algeria
[5] King Khalid Univ, Coll Sci, Math Dept, Abha 61413, Saudi Arabia
[6] South Valley Univ, Fac Sci, Dept Math, Qena 83523, Egypt
[7] Texas A&M Univ, Engn Coll, College Stn, TX USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2023年 / 16卷 / 06期
关键词
Moore-Gibson-Thompson equation; viscoelastic memory type ii; non-; local condition; approximate solution; Galerkin?s Method;
D O I
10.3934/dcdss.2022151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and uniqueness of solutions of a new class of Moore-Gibson-Thompson equation with respect to the nonlocal mixed boundary value problem and memory kernel of type II. This work is a generalization and improved of recent result in ([7], Math. Meth. App. Sci. 42, 2664-2679) and ([15], J. Evol. Equ. 20, 1251-1268 (2020)).
引用
收藏
页码:1216 / 1241
页数:26
相关论文
共 35 条
[1]   A Regularity Criterion in Weak Spaces to Boussinesq Equations [J].
Agarwal, Ravi P. ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
MATHEMATICS, 2020, 8 (06)
[2]   A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space [J].
Agarwal, Ravi P. ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03)
[3]   On the continuation principle of local smooth solution for the Hall-MHD equations [J].
Agarwal, Ravi P. ;
Alghamdi, Ahmad M. A. ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
APPLICABLE ANALYSIS, 2022, 101 (02) :545-553
[4]   A regularity criterion for local strong solutions to the 3D Stokes-MHD equations [J].
Alghamdi, Ahmad Mohammad ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
ANNALES POLONICI MATHEMATICI, 2020, 124 (03) :247-255
[5]   On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces [J].
Barbagallo, Annamaria ;
Gala, Sadek ;
Ragusa, Maria Alessandra ;
Thera, Michel .
VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (03) :637-649
[6]   Galerkin method for nonlocal mixed boundary value problem for the Moore-Gibson-Thompson equation with integral condition [J].
Boulaaras, Salah ;
Zarai, Abderrahmane ;
Draifia, Alaeddin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (08) :2664-2679
[7]   The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms [J].
Boulaaras, Salah ;
Haiour, Mohamed .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (01) :161-173
[8]   L∞-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem [J].
Boulaaras, Salah ;
Haiour, Mohamed .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) :6443-6450
[9]   STEPWISE STABILITY FOR THE HEAT-EQUATION WITH A NONLOCAL CONSTRAINT [J].
CAHLON, B ;
KULKARNI, DM ;
SHI, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) :571-593
[10]  
Cannon J.R., 1963, Quart. Appl. Math, V21, P155, DOI [10.1090/qam/160437, DOI 10.1090/QAM/160437]