Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations

被引:17
作者
Becker, Sebastian [1 ]
Gess, Benjamin [2 ,3 ]
Jentzen, Arnulf [4 ,5 ,6 ,7 ]
Kloeden, Peter E. [8 ]
机构
[1] Swiss Fed Inst Technol, RiskLab, Dept Math, CH-8092 Zurich, Switzerland
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Univ Bielefeld, Fac Math, D-33615 Bielefeld, Germany
[4] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Peoples R China
[5] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[6] Univ Munster, Appl Math Inst Anal & Numer, D-48149 Munster, Germany
[7] Swiss Fed Inst Technol, Dept Math, Seminar Appl Math, CH-8092 Zurich, Switzerland
[8] Goethe Univ Frankfurt, Math Inst, D-60325 Frankfurt, Germany
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2023年 / 11卷 / 01期
关键词
Stochastic partial differential equation; SPDE; Stochastic Allen-Cahn equation; Numerical method; Numerical approximation; Strong convergence; DISCRETIZATION; COEFFICIENTS; SCHEMES; BOUNDS; SPDES; LIMIT; SDES;
D O I
10.1007/s40072-021-00226-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Strong convergence rates for fuly discrete numerical approximations of space-time white noise driven SPDEs with superlinearly growing nonlinearities, such as the stochastic Allen-Cahn equation with space-time white noise, are shown. The obtained strong rates of convergence are essentially sharp.
引用
收藏
页码:211 / 268
页数:58
相关论文
共 40 条
[1]   Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values [J].
Andersson, Adam ;
Jentzen, Arnulf ;
Kurniawan, Ryan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
[3]  
[Anonymous], 2014, Encyclopedia of Mathematics and Its Applications
[4]  
Becker S., 2017, ARXIV171102423V1
[5]   Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations [J].
Becker, Sebastian ;
Gess, Benjamin ;
Jentzen, Arnulf ;
Kloeden, Peter E. .
BIT NUMERICAL MATHEMATICS, 2020, 60 (04) :1057-1073
[6]   Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations [J].
Becker, Sebastian ;
Jentzen, Arnulf .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (01) :28-69
[7]   Modulation Equation and SPDEs on Unbounded Domains [J].
Bianchi, Luigi Amedeo ;
Bloemker, Dirk ;
Schneider, Guido .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) :19-54
[8]   Numerically computable a posteriori-bounds for the stochastic Allen-Cahn equation [J].
Bloemker, Dirk ;
Kamrani, Minoo .
BIT NUMERICAL MATHEMATICS, 2019, 59 (03) :647-673
[9]   Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation [J].
Brehier, Charles-Edouard ;
Goudenege, Ludovic .
BIT NUMERICAL MATHEMATICS, 2020, 60 (03) :543-582
[10]   ANALYSIS OF SOME SPLITTING SCHEMES FOR THE STOCHASTIC ALLEN-CAHN EQUATION [J].
Brehier, Charles-Edouard ;
Goudenege, Ludovic .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08) :4169-4190