Treatment Response Prediction in Major Depressive Disorder Using Multimodal MRI and Clinical Data: Secondary Analysis of a Randomized Clinical Trial

被引:20
作者
Poirot, Maarten G. [1 ,2 ,3 ]
Ruhe, Henricus G. [1 ,4 ,5 ]
Mutsaerts, Henk-Jan M. M. [3 ,6 ]
Maximov, Ivan I. [7 ]
Groote, Inge R. [8 ,9 ]
Bjornerud, Atle [7 ,9 ,10 ]
Marquering, Henk A. [1 ,2 ]
Reneman, Liesbeth [1 ,2 ,3 ]
Caan, Matthan W. A. [2 ,3 ,8 ]
机构
[1] Univ Amsterdam, Dept Radiol & Nucl Med, Locat AMC, Amsterdam UMC, Amsterdam, Netherlands
[2] Univ Amsterdam, Locat AMC, Amsterdam UMC, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[3] Amsterdam Neurosci, Brain Imaging, Amsterdam, Netherlands
[4] Radboudumc, Dept Psychiat, Nijmegen, Netherlands
[5] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
[6] Vrije Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC Locat, Amsterdam, Netherlands
[7] Western Norway Univ Appl Sci, Dept Hlth & Functioning, Bergen, Norway
[8] Vestfold Hosp Trust, Div Radiol, Tonsberg, Norway
[9] Oslo Univ Hosp, Div Radiol & Nucl Med, Computat Radiol & Artificial Intelligence, Oslo, Norway
[10] Univ Oslo, Dept Psychol, Oslo, Norway
基金
欧盟地平线“2020”;
关键词
ANTIDEPRESSANT RESPONSE; MODERATORS; OUTCOMES; CLASSIFICATION; METAANALYSIS; ACTIVATION; CITALOPRAM; BIOMARKERS; MEDIATORS; SYSTEM;
D O I
10.1176/appi.ajp.20230206
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Objective: Response to antidepressant treatment in major depressive disorder varies substantially between individuals, which lengthens the process of finding effective treatment. The authors sought to determine whether a multimodal machine learning approach could predict early sertraline response in patients with major depressive disorder. They assessed the predictive contribution of MR neuroimaging and clinical assessments at baseline and after 1 week of treatment. Methods: This was a preregistered secondary analysis of data from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, a multisite double -blind, placebo-controlled randomized clinical trial that included 296 adult outpatients with unmedicated recurrent or chronic major depressive disorder. MR neuroimaging and clinical data were collected before and after 1 week of treatment. Performance in predicting response and remission, collected after 8 weeks, was quantified using balanced accuracy (bAcc) and area under the receiver operating characteristic curve (AUROC) scores. Results: A total of 229 patients were included in the analyses (mean age, 38 years [SD=13]; 66% female). Internal crossvalidation performance in predicting response to sertraline (bAcc=68% [SD=10], AUROC=0.73 [SD=0.03]) was significantly better than chance. External cross-validation on data from placebo nonresponders (bAcc=62%, AUROC=0.66) and placebo nonresponders who were switched to sertraline (bAcc=65%, AUROC=0.68) resulted in differences that suggest specificity for sertraline treatment compared with placebo treatment. Finally, multimodal models outperformed unimodal models. Conclusions: The study results confirm that early sertraline treatment response can be predicted; that the models are sertraline specific compared with placebo; that prediction benefits from integrating multimodal MRI data with clinical data; and that perfusion imaging contributes most to these predictions. Using this approach, a lean and effective protocol could individualize sertraline treatment planning to improve psychiatric care.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 52 条
[1]   Treatment-resistant depression: therapeutic trends, challenges, and future directions [J].
Al-Harbi, Khalid Saad .
PATIENT PREFERENCE AND ADHERENCE, 2012, 6 :369-388
[2]   Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder [J].
Bartlett, Elizabeth A. ;
DeLorenzo, Christine ;
Sharma, Priya ;
Yang, Jie ;
Zhang, Mengru ;
Petkova, Eva ;
Weissman, Myrna ;
McGrath, Patrick J. ;
Fava, Maurizio ;
Ogden, R. Todd ;
Kurian, Benji T. ;
Malchow, Ashley ;
Cooper, Crystal M. ;
Trombello, Joseph M. ;
McInnis, Melvin ;
Adams, Phillip ;
Oquendo, Maria A. ;
Pizzagalli, Diego A. ;
Trivedi, Madhukar ;
Parsey, Ramin V. .
NEUROPSYCHOPHARMACOLOGY, 2018, 43 (11) :2221-2230
[3]   Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction [J].
Bastiani, Matteo ;
Cottaar, Michiel ;
Fitzgibbon, Sean P. ;
Suri, Sana ;
Alfaro-Almagro, Fidel ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Andersson, Jesper L. R. .
NEUROIMAGE, 2019, 184 :801-812
[4]  
Beckmann C.F., 2009, Group Comparison of Resting-state FMRI Data Using Multi-subject ICA and Dual Regression, DOI [10.1016/S1053-8119(09)71511-3, DOI 10.1016/S1053-8119(09)71511-3]
[5]  
Bergstra J., 2013, INT C MACHINE LEARNI, P115, DOI DOI 10.5555/3042817.3042832
[6]   Cross-national epidemiology of DSM-IV major depressive episode [J].
Bromet, Evelyn ;
Andrade, Laura Helena ;
Hwang, Irving ;
Sampson, Nancy A. ;
Alonso, Jordi ;
de Girolamo, Giovanni ;
de Graaf, Ron ;
Demyttenaere, Koen ;
Hu, Chiyi ;
Iwata, Noboru ;
Karam, Aimee N. ;
Kaur, Jagdish ;
Kostyuchenko, Stanislav ;
Lepine, Jean-Pierre ;
Levinson, Daphna ;
Matschinger, Herbert ;
Medina Mora, Maria Elena ;
Browne, Mark Oakley ;
Posada-Villa, Jose ;
Viana, Maria Carmen ;
Williams, David R. ;
Kessler, Ronald C. .
BMC MEDICINE, 2011, 9
[7]   Placebo effects and neuromodulation for depression: a meta-analysis and evaluation of shared mechanisms [J].
Burke, Matthew J. ;
Romanella, Sara M. ;
Mencarelli, Lucia ;
Greben, Rachel ;
Fox, Michael D. ;
Kaptchuk, Ted J. ;
Pascual-Leone, Alvaro ;
Santarnecchi, Emiliano .
MOLECULAR PSYCHIATRY, 2022, 27 (03) :1658-1666
[8]   Accounting for Dynamic Fluctuations across Time when Examining fMRI Test-Retest Reliability: Analysis of a Reward Paradigm in the EMBARC Study [J].
Chase, Henry W. ;
Fournier, Jay C. ;
Greenberg, Tsafrir ;
Almeida, Jorge R. ;
Stiffler, Richelle ;
Zevallos, Carlos R. ;
Aslam, Haris ;
Cooper, Crystal ;
Deckersbach, Thilo ;
Weyandt, Sarah ;
Adams, Phillip ;
Toups, Marisa ;
Carmody, Tom ;
Oquendo, Maria A. ;
Peltier, Scott ;
Fava, Maurizio ;
McGrath, Patrick J. ;
Weissman, Myrna ;
Parsey, Ramin ;
McInnis, Melvin G. ;
Kurian, Benji ;
Trivedi, Madhukar H. ;
Phillips, Mary L. .
PLOS ONE, 2015, 10 (05)
[9]   Cross-trial prediction of treatment outcome in depression: a machine learning approach [J].
Chekroud, Adam Mourad ;
Zotti, Ryan Joseph ;
Shehzad, Zarrar ;
Gueorguieva, Ralitza ;
Johnson, Marcia K. ;
Trivedi, Madhukar H. ;
Cannon, Tyrone D. ;
Krystal, John Harrison ;
Corlett, Philip Robert .
LANCET PSYCHIATRY, 2016, 3 (03) :243-250
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794