Entropy and the discrete central limit theorem

被引:3
作者
Gavalakis, Lampros [1 ]
Kontoyiannis, Ioannis [2 ]
机构
[1] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Ctr Math Sci, DPMMS, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
Central limit theorem; Entropy; Fisher information; Relative entropy; Bernoulli part decomposition; Lattice distribution; Convolution inequality; MONOTONICITY; INFORMATION; INEQUALITY;
D O I
10.1016/j.spa.2023.104294
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of n independent and identically distributed lattice random variables and an appropriately discretised Gaussian, vanishes as n -> infinity.
引用
收藏
页数:10
相关论文
共 33 条
[31]  
Takano S, 1987, Yokohama Mathematical Journal, V35, P143
[32]   Sumset and Inverse Sumset Theory for Shannon Entropy [J].
Tao, Terence .
COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (04) :603-639
[33]   Monotonic decrease of the non-Gaussianness of the sum of independent random variables:: A simple proof [J].
Tulino, Antonia M. ;
Verdu, Sergio .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) :4295-4297