Entropy and the discrete central limit theorem

被引:3
作者
Gavalakis, Lampros [1 ]
Kontoyiannis, Ioannis [2 ]
机构
[1] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Ctr Math Sci, DPMMS, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
Central limit theorem; Entropy; Fisher information; Relative entropy; Bernoulli part decomposition; Lattice distribution; Convolution inequality; MONOTONICITY; INFORMATION; INEQUALITY;
D O I
10.1016/j.spa.2023.104294
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of n independent and identically distributed lattice random variables and an appropriately discretised Gaussian, vanishes as n -> infinity.
引用
收藏
页数:10
相关论文
共 33 条
[21]   A LOWER BOUND FOR DISCRIMINATION INFORMATION IN TERMS OF VARIATION [J].
KULLBACK, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :126-+
[22]  
LINNIK YV, 1959, THEORY PROBABILITY I, V4, P288
[23]   Generalized entropy power inequalities and monotonicity properties of information [J].
Madiman, Mokshay ;
Barron, Andrew .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) :2317-2329
[24]  
Massey J.L, 1988, 1988 IEEE WORKSHOP I
[25]  
MCDONALD DR, 1979, THEOR PROBAB APPL+, V24, P613
[26]   CRITERION FOR TAIL EVENTS FOR SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
MINEKA, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 25 (03) :163-170
[27]   Variations on a Theme by Massey [J].
Rioul, Olivier .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) :2813-2828
[28]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[29]  
Shimizu R., 1975, A Modern Course on Statistical Distributions in Scientific Work, V3, P305
[30]  
Stam Aart Johannes, 1959, Information and Control, V2, P101