Entropy and the discrete central limit theorem

被引:3
作者
Gavalakis, Lampros [1 ]
Kontoyiannis, Ioannis [2 ]
机构
[1] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Ctr Math Sci, DPMMS, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
Central limit theorem; Entropy; Fisher information; Relative entropy; Bernoulli part decomposition; Lattice distribution; Convolution inequality; MONOTONICITY; INFORMATION; INEQUALITY;
D O I
10.1016/j.spa.2023.104294
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of n independent and identically distributed lattice random variables and an appropriately discretised Gaussian, vanishes as n -> infinity.
引用
收藏
页数:10
相关论文
共 33 条
[1]  
[Anonymous], 1950, An Introduction to Probability Theory and Its Applications
[2]   Solution of Shannon's problem on the monotonicity of entropy [J].
Artstein, S ;
Ball, KM ;
Barthe, F ;
Naor, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :975-982
[3]   Compound Poisson Approximation via Information Functionals [J].
Barbour, A. D. ;
Johnson, O. ;
Kontoyiannis, I. ;
Madiman, M. .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :1344-1368
[4]   ENTROPY AND THE CENTRAL-LIMIT-THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1986, 14 (01) :336-342
[5]   THE CONVOLUTION INEQUALITY FOR ENTROPY POWERS [J].
BLACHMAN, NM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (02) :267-271
[6]   Concentration functions and entropy bounds for discrete log-concave distributions [J].
Bobkov, Sergey G. ;
Marsiglietti, Arnaud ;
Melbourne, James .
COMBINATORICS PROBABILITY AND COMPUTING, 2022, 31 (01) :54-72
[7]  
Brown LawrenceD., 1982, Statistics and probability: essays in honor of C. R. Rao, P141
[8]   CODING FOR T-USER MULTIPLE-ACCESS CHANNELS [J].
CHANG, S ;
WELDON, EJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (06) :684-691
[9]  
Cover T. M., 1999, Elements of information theory
[10]  
CSISZAR I, 1967, STUD SCI MATH HUNG, V2, P299