From landfill to hydrogen: Techno-economic analysis of hybridized hydrogen production systems integrating biogas reforming and Power- to-Gas technologies

被引:11
|
作者
Lo Basso, Gianluigi [1 ]
Pastore, Lorenzo Mario [1 ]
Mojtahed, Ali [1 ]
de Santoli, Livio [1 ]
机构
[1] Sapienza Univ Rome, Dept Astronaut Elect & Energy Engn, Rome, Italy
关键词
Green hydrogen; Landfill; Water electrolysis; Steam reforming; SOEC; Hybrid energy systems; CATALYTIC PARTIAL OXIDATION; METHANE PARTIAL OXIDATION; MODEL BIOGAS; ENERGY-STORAGE; GREEN HYDROGEN; NI CATALYSTS; FUEL-CELLS; ELECTROLYSIS; STEAM; PERFORMANCE;
D O I
10.1016/j.ijhydene.2023.07.130
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the new hydrogen economy, bio-hydrogen derived from organic material can represent an opportunity to valorise current waste management systems. The present work deals with innovative systems for producing hydrogen from landfill gas combining Power-to-Gas plants and biogas reforming. To do so, Pressure Swing Adsorption (PSA) and Chemical Absorption (CA) have been assessed for biogas upgrading. Furthermore, both high-temperature electrolysis by SOECs (solid oxide electrolysis cell) and low-temperature electrolysis by PEM (proton exchange membrane) and Alkaline electrolysers are pre-sented. The simulation results are compared in terms of Levelized Cost of Hydrogen (LCOH) at stack price and after compression and storage. Assuming a capacity factor equal to 70%, the potential hydrogen production rate in such hybrid configurations ranges between 26 and 28 kgH2/h. Furthermore, the LCOH turns out to be in a range between 1.9 and 3.3 euro/kgH2. Considering 2030 forecast, LCOH below 2 euro/kgH2 at stack is feasible. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:37607 / 37624
页数:18
相关论文
共 50 条
  • [21] Renewable-power-assisted production of hydrogen and liquid hydrocarbons from natural gas: techno-economic analysis
    Ostadi, Mohammad
    Hillestad, Magne
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (14) : 3402 - 3415
  • [22] Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies
    Salkuyeh, Yaser Khojasteh
    Saville, Bradley A.
    MacLean, Heather L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (30) : 18894 - 18909
  • [23] A preliminary techno-economic analysis of photofermentative hydrogen production
    Genc, Sehnaz
    Koku, Harun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 212 - 222
  • [24] Techno-economic assessment of hydrogen production from seawater
    Dokhani, Sepanta
    Assadi, Mohsen
    Pollet, Bruno G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (26) : 9592 - 9608
  • [25] Hydrogen production from woody biomass gasification: a techno-economic analysis
    Gubin, Veronica
    Benedikt, Florian
    Thelen, Ferdinand
    Hammerschmid, Martin
    Popov, Tom
    Hofbauer, Hermann
    Mueller, Stefan
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2024, 18 (04): : 818 - 836
  • [26] Wind Turbine Power System for Hydrogen Production and Storage: Techno-economic Analysis
    Tebibel, Hammou
    2018 INTERNATIONAL CONFERENCE ON WIND ENERGY AND APPLICATIONS IN ALGERIA (ICWEAA' 2018), 2018,
  • [27] Techno-economic analysis of RES & hydrogen technologies integration in remote island power system
    Tzamalis, G.
    Zoulias, E. I.
    Stamatakis, E.
    Parissis, O. -S
    Stubos, A.
    Lois, E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (26) : 11646 - 11654
  • [28] Techno-economic analysis of hydrogen production in the sugarcane industry by steam reforming of ethanol with carbon capture
    Martins, Isaac Sousa
    Fraga, Gabriel
    Zhou, Song
    Sakheta, Aban
    Ramirez, Jerome
    O'Hara, Ian
    ENERGY CONVERSION AND MANAGEMENT, 2025, 328
  • [29] Scenario-Based Techno-Economic Analysis of Steam Methane Reforming Process for Hydrogen Production
    Lee, Shinje
    Kim, Hyun Seung
    Park, Junhyung
    Kang, Boo Min
    Cho, Churl-Hee
    Lim, Hankwon
    Won, Wangyun
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [30] Techno-Economic Assessment of hydrogen production from three different solar photovoltaic technologies
    Achour, Youssef
    Berrada, Asmae
    Arechkik, Ameur
    El Mrabet, Rachid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (83) : 32261 - 32276