Waterproof and robust Al:GO for greatly-enhanced energy harvesting and reliable self-powered fluid velocity sensing

被引:6
|
作者
Wang, Ruey-Chi [1 ]
Chiang, Bo-Chen [1 ]
Lin, I-Ju [1 ]
Chen, Hsiu-Cheng [1 ]
Hung, Hao-Chun [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung 81148, Taiwan
关键词
Nanogenerator; Self-powered; Graphene oxide; Al; Sensor; TRIBOELECTRIC NANOGENERATOR; GRAPHENE-OXIDE; FILMS; HYDROGEL; DENSITY;
D O I
10.1016/j.jallcom.2023.172222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New applications of nanogenerators (NGs) in various environments (dry or wet) have gained increasing attention, but the mechanical strength and water resistance of active materials in nanogenerators need to be enhanced for reliable and durable performance. In this study, we propose a strategy to enhance water resistance and mechanical strength of graphene oxide (GO) membranes/films by surface treatment and cross-linking to fabricate reliable self-powered fluid sensors, and gigantically-enhanced triboelectric NGs. The bonding of Al ions dramatically improves the water resistance of GO membranes, making them suitable for immersion-type solidliquid TENGs. The water flow-induced direct-current output has an excellent linear relationship with the water flow speed (R-2 >0.99), rendering them ideal for self-powered water speed sensors. Besides, the output voltage and current of the Al:GO solid-solid TENG are increased by 18.5 and 6.7 times, respectively, by Al-containing molecular dipoles, and the durability is also greatly enhanced due to Al-induced crosslinking. This work promotes practical applications of nanogenerators for various self-powered sensing and energy harvesting in various environments.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Rotational energy harvesting for self-powered sensing
    Fu, Hailing
    Mei, Xutao
    Yurchenko, Daniil
    Zhou, Shengxi
    Theodossiades, Stephanos
    Nakano, Kimihiko
    Yeatman, Eric M.
    JOULE, 2021, 5 (05) : 1074 - 1118
  • [2] Self-powered and self-sensing devices based on piezoelectric energy harvesting
    Chen, Gantong
    Zhu, Yue
    Huang, Dongmei
    Zhou, Shengxi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (06) : 1631 - 1667
  • [3] Ferroelectric Nanomaterials for Energy Harvesting and Self-Powered Sensing Applications
    Yu, Xiang
    Ji, Yun
    Zhang, Kewei
    Shen, Xinyi
    Zhang, Shijian
    Xu, Mofei
    Le, Xiaoyun
    ADVANCED SENSOR RESEARCH, 2024, 3 (12):
  • [4] Multifunctional Textile for Energy Harvesting and Self-Powered Sensing Applications
    Jao, Y. -T.
    Chang, T. -W.
    Lin, Z. -H.
    SOLID-STATE ELECTRONICS AND PHOTONICS IN BIOLOGY AND MEDICINE 4, 2017, 77 (07): : 47 - 50
  • [5] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2022, 291
  • [6] Enhanced Triboelectric Nanogenerator Based on a Hybrid Cellulose Aerogel for Energy Harvesting and Self-Powered Sensing
    Luo, Chen
    Ma, Hongzhi
    Yu, Hua
    Zhang, Yuhao
    Shao, Yan
    Yin, Bo
    Ke, Kai
    Zhou, Ling
    Zhang, Kai
    Yang, Ming-Bo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (25) : 9424 - 9432
  • [7] A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Hu, Shiyu
    Chang, Shoude
    Xiao, Gaozhi
    Lu, Jianping
    Gao, Jun
    Zhang, Yanguang
    Tao, Ye
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (03)
  • [8] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85
  • [9] Self-Powered Smart Vibration Absorber for In Situ Sensing and Energy Harvesting
    Xu, Jiawen
    Wang, Zhenyu
    Nie, Heng-Yong
    Wei, Yen
    Liu, Yu
    ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (07)
  • [10] Hierarchically porous architectured stretchable fibrous materials in energy harvesting and self-powered sensing
    Han, Jing
    Li, Zihua
    Fang, Cuiqin
    Liu, Xinlong
    Yang, Yujue
    Wang, Qian
    Zhang, Junze
    Xu, Bingang
    NANO ENERGY, 2024, 129