An integer programming model for controlling dengue transmission

被引:0
作者
Mahasinghe, A. C. [1 ]
Erandi, K. K. W. H. [1 ]
Perera, S. S. N. [1 ]
机构
[1] Univ Colombo, Res & Dev Ctr Math Modelling, Dept Math, Colombo 03, Sri Lanka
基金
美国国家科学基金会;
关键词
dengue control; integer programming; binary optimisation; epidemiological network; weighted graphs; control strategies; epidemiological isolation; time-dependent formulation; dominating set; computational challenges; CRITICAL NODES; ALGORITHMS;
D O I
10.1504/IJCSM.2023.133631
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Prevailing dengue-control strategies in many developing countries yield only limited benefits due to non-optimality of those strategies. In this paper, we demonstrate how the same strategies could be altered using the same amount of resources in order to yield more fruitful results. Accordingly, we develop a binary integer programming model, aimed at minimising the total number of susceptible individuals with high-risk of being infected with dengue, by identifying the most influential dengue-infected individuals who could undergo an epidemiological isolation, subject to the conditions imposed by the topological properties of the epidemiological network and budgetary constraints. Further, we analyse the proposed epidemiological isolation to examine its adequacy in a real-world implementation.
引用
收藏
页码:128 / 137
页数:11
相关论文
共 13 条
[1]   Identifying critical nodes in undirected graphs: Complexity results and polynomial algorithms for the case of bounded treewidth [J].
Addis, Bernardetta ;
Di Summa, Marco ;
Grosso, Andrea .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2349-2360
[2]   Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever [J].
Bouzid, Maha ;
Colon-Gonzalez, Felipe J. ;
Lung, Tobias ;
Lake, Iain R. ;
Hunter, Paul R. .
BMC PUBLIC HEALTH, 2014, 14
[3]  
Brauer F., 2008, MATH EPIDEMIOLOGY, V1945
[4]   An integer linear programming formulation for removing nodes in a network to minimize the spread of influenza virus infections [J].
Charkhgard, Hadi ;
Subramanian, Vignesh ;
Silva, Walter ;
Das, Tapas K. .
DISCRETE OPTIMIZATION, 2018, 30 :144-167
[5]   Branch and cut algorithms for detecting critical nodes in undirected graphs [J].
Di Summa, Marco ;
Grosso, Andrea ;
Locatelli, Marco .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (03) :649-680
[6]   Finding the chromatic sums of graphs using a D-Wave quantum computer [J].
Dinneen, Michael J. ;
Mahasinghe, Anuradha ;
Liu, Kai .
JOURNAL OF SUPERCOMPUTING, 2019, 75 (08) :4811-4828
[7]   Analysis and forecast of dengue incidence in urban Colombo, Sri Lanka [J].
Erandi, K. K. W. H. ;
Perera, S. S. N. ;
Mahasinghe, A. C. .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2021, 18 (01)
[8]   Infectious disease control using contact tracing in random and scale-free networks [J].
Kiss, IZ ;
Green, DM ;
Kao, RR .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2006, 3 (06) :55-62
[9]   Disease contact tracing in random and clustered networks [J].
Kiss, IZ ;
Green, DM ;
Kao, RR .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 272 (1570) :1407-1414
[10]   The unconstrained binary quadratic programming problem: a survey [J].
Kochenberger, Gary ;
Hao, Jin-Kao ;
Glover, Fred ;
Lewis, Mark ;
Lu, Zhipeng ;
Wang, Haibo ;
Wang, Yang .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (01) :58-81