Inflationary theory of branching morphogenesis in the mouse salivary gland

被引:2
作者
Bordeu, Ignacio [1 ,2 ,3 ]
Chatzeli, Lemonia [2 ,4 ]
Simons, Benjamin D. [1 ,2 ,4 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge, England
[2] Univ Cambridge, Wellcome Trust Canc Res UK Gurdon Inst, Cambridge, England
[3] Univ Chile, Fac Ciencias Fis & Matemat, Dept Phys, Santiago, Chile
[4] Univ Cambridge, Wellcome Trust Med Res Council Cambridge Stem Cel, Jeffrey Cheah Biomed Ctr, Cambridge, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
CELL; DYNAMICS; MATRIX; PATTERN; RULES;
D O I
10.1038/s41467-023-39124-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanisms that regulate the patterning of branched epithelia remain a subject of long-standing debate. Recently, it has been proposed that the statistical organization of multiple ductal tissues can be explained through a local self-organizing principle based on the branching-annihilating random walk (BARW) in which proliferating tips drive a process of ductal elongation and stochastic bifurcation that terminates when tips encounter maturing ducts. Here, applied to mouse salivary gland, we show the BARW model struggles to explain the large-scale organization of tissue. Instead, we propose that the gland develops as a tip-driven branching-delayed random walk (BDRW). In this framework, a generalization of the BARW, tips inhibited through steric interaction with proximate ducts may continue their branching program as constraints become alleviated through the persistent expansion of the surrounding tissue. This inflationary BDRW model presents a general paradigm for branching morphogenesis when the ductal epithelium grows cooperatively with the domain into which it expands. The authors show that the ramified ductal network of the mouse salivary gland develops from a set of simple probabilistic rules, where ductal elongation and branching are driven by the persistent expansion of the surrounding tissue.
引用
收藏
页数:11
相关论文
共 47 条
[1]  
BORGHESE E, 1950, J ANAT, V84, P287
[2]   Multi-scale simulation of early kidney branching morphogenesis [J].
Cai, Wenran ;
Wang, Yunqi ;
Zhang, Jicong ;
Zhang, Hong ;
Luo, Tianzhi .
PHYSICAL BIOLOGY, 2021, 18 (02)
[3]   EPIDEMIC MODELS AND PERCOLATION [J].
CARDY, JL ;
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (06) :L267-L271
[4]   When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation [J].
Cates, M. E. ;
Tailleur, J. .
EPL, 2013, 101 (02)
[5]   A cellular hierarchy of Notch and Kras signaling controls cell fate specification in the developing mouse salivary gland [J].
Chatzeli, Lemonia ;
Bordeu, Ignacio ;
Han, Seungmin ;
Bisetto, Sara ;
Waheed, Zahra ;
Koo, Bon-Kyoung ;
Alcolea, Maria P. ;
Simons, Benjamin D. .
DEVELOPMENTAL CELL, 2023, 58 (02) :94-+
[6]   Reaction and diffusion on growing domains: Scenarios for robust pattern formation [J].
Crampin, EJ ;
Gaffney, EA ;
Maini, PK .
BULLETIN OF MATHEMATICAL BIOLOGY, 1999, 61 (06) :1093-1120
[7]  
CUTLER L S, 1991, Critical Reviews in Oral Biology and Medicine, V2, P1
[8]   Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis [J].
Daley, William P. ;
Gulfo, Kathryn M. ;
Sequeira, Sharon J. ;
Larsen, Melinda .
DEVELOPMENTAL BIOLOGY, 2009, 336 (02) :169-182
[9]   Apoptosis and proliferation during human salivary gland development [J].
de Mello Gomes, Agatha Nagli ;
Nagai, Maria Aparecida ;
Lourenco, Silvia Vanessa ;
Coutinho-Camillo, Claudia Malheiros .
JOURNAL OF ANATOMY, 2019, 234 (06) :830-838
[10]  
Gaete M, 2022, CRANIOFACIAL DEV MET