Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading

被引:77
作者
Sun, Hainan [1 ]
Li, Lili [2 ]
Chen, Yahui [3 ]
Kim, Hyunseung [1 ]
Xu, Xiaomin [4 ]
Guan, Daqin [5 ]
Hu, Zhiwei [6 ]
Zhang, Linjuan [2 ]
Shao, Zongping [4 ,7 ]
Jung, WooChul [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daejeon 34141, South Korea
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China
[3] Ewha Womans Univ, Dept Chem & Nanosci, Seoul 03760, South Korea
[4] Curtin Univ, WA Sch Mines: Minerals Energy & Chem Engn WASM MEC, Perth, WA 6102, Australia
[5] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Hung Hom, Hong Kong 999077, Peoples R China
[6] Affiliat Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[7] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2023年 / 325卷
基金
新加坡国家研究基金会;
关键词
3d transition metal; Nano-heterostructure; Ethanol oxidation reaction; Value-added chemicals; Hydrogen production; DOUBLE HYDROXIDE NANOSHEETS; EFFICIENT; ELECTROCATALYSTS; NANOWIRES; STABILITY; DENSITY;
D O I
10.1016/j.apcatb.2023.122388
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Substituting the anodic oxygen evolution reaction in water electrolysis with a thermodynamically more favorable ethanol oxidation reaction (EOR) provides a promising route for simultaneous biomass upgrading and energysaving hydrogen production. Herein, we synthesize a NiOOH-CuO nano-heterostructure anchored on a threedimensional conductive Cu foam, which exhibits remarkable EOR performance, surpassing all the state-of-theart 3d transition-metal-based EOR electrocatalysts. Density functional theory reveals that the coupling between CuO and NiOOH by charge redistribution at the interface is critical, synergistically reducing the EOR energy barriers into an energetically favorable pathway. Conclusively, the hybrid water electrolysis cell using our catalyst as the anode (1) requires only a low cell voltage for H2 generation at the cathode and only liquid chemical production of acetate at the anode, and (2) shows a high ethanol conversion rate to acetate, which can readily be separated from the aqueous electrolyte by subsequent acidification and extraction processes.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Selective Ethanol Oxidation Reaction at the Rh-SnO2 Interface [J].
Bai, Shuxing ;
Xu, Yong ;
Cao, Kailei ;
Huang, Xiaoqing .
ADVANCED MATERIALS, 2021, 33 (05)
[2]   Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation [J].
Chen, Wei ;
Xie, Chao ;
Wang, Yanyong ;
Zou, Yuqin ;
Dong, Chung-Li ;
Huang, Yu-Cheng ;
Xiao, Zhaohui ;
Wei, Zengxi ;
Du, Shiqian ;
Chen, Chen ;
Zhou, Bo ;
Ma, Jianmin ;
Wang, Shuangyin .
CHEM, 2020, 6 (11) :2974-2993
[3]   Ethanol as a Renewable Building Block for Fuels and Chemicals [J].
Dagle, Robert A. ;
Winkelman, Austin D. ;
Ramasamy, Karthikeyan K. ;
Dagle, Vanessa Lebarbier ;
Weber, Robert S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (11) :4843-4853
[4]   Earth-Abundant Metal-Based Electrocatalysts Promoted Anodic Reaction in Hybrid Water Electrolysis for Efficient Hydrogen Production: Recent Progress and Perspectives [J].
Deng, Chen ;
Toe, Cui Ying ;
Li, Xuan ;
Tan, Jingjin ;
Yang, Hengpan ;
Hu, Qi ;
He, Chuanxin .
ADVANCED ENERGY MATERIALS, 2022, 12 (25)
[5]   Enhancing the Separation Efficiency in Acetic Acid Manufacturing by Methanol Carbonylation [J].
Dimian, Alexandre C. ;
Kiss, Anton A. .
CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (10) :1792-1802
[6]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[7]   Why the breaking of the OOH versus OH scaling relation might cause decreased electrocatalytic activity [J].
Exner, Kai S. .
CHEM CATALYSIS, 2021, 1 (02) :258-271
[8]   High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production [J].
Fan, Linfeng ;
Ji, Yaxin ;
Wang, Genxiang ;
Chen, Junxiang ;
Chen, Kai ;
Liu, Xi ;
Wen, Zhenhai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (16) :7224-7235
[9]   Interfacial engineering of Ni(OH)2 on W2C for remarkable alkaline hydrogen production [J].
Fu, Hong Chuan ;
Wang, Xiao Hu ;
Chen, Xiao Hui ;
Zhang, Qing ;
Li, Nian Bing ;
Luo, Hong Qun .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 301
[10]   Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst [J].
Geng, Shi-Kui ;
Zheng, Yao ;
Li, Shan-Qing ;
Su, Hui ;
Zhao, Xu ;
Hu, Jun ;
Shu, Hai-Bo ;
Jaroniec, Mietek ;
Chen, Ping ;
Liu, Qing-Hua ;
Qiao, Shi-Zhang .
NATURE ENERGY, 2021, 6 (09) :904-912