Threshold convergence results for a nonlocal time-delayed diffusion equation

被引:4
作者
Huang, Rui [1 ]
Mei, Ming [2 ,3 ]
Wang, Zhuangzhuang [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nonlocal diffusion; Time delay; Asymptotic behavior; TRAVELING-WAVES; CONVOLUTION MODEL; HEAT-EQUATION; STABILITY; EXISTENCE; APPROXIMATE;
D O I
10.1016/j.jde.2023.03.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the asymptotic behavior for nonlocal dispersion Nicholson blowflies equation ut = D(J *u -u)-du +pu(t - tau, x)e-au(t-tau,x) in the whole RN. By the method of Fourier transform, we first derive the decay estimates for the fundamental solutions with time-delay. Then, we obtain the threshold results with optimal convergence rates for the original solution to the constant equilibrium. Namely, when 0 <dp<1, the solution u(t, x) globally converges to the equilibrium 0 in the time-exponential form; when pd= 1, the solution u(t, x) globally converges to 0 in the time-algebraical form; when 1 <dp <= e, the solution u(t, x) globally converges to u+ in the time-exponential form; and when e <dp< e2, it locally converges to u+ in the time-exponential form. This indicates that when the death rate is bigger than the birth rate, the blowflies will disappear in future. While, when the birth rate is bigger than the death rate in a certain range, then the blowflies population will reach an equilibrium after long time. The lower-higher frequency analysis plays a crucial role in the proof. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 106
页数:31
相关论文
共 36 条
[1]   A nonlocal p-Laplacian evolution equation with Neumann boundary conditions [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02) :201-227
[2]   The Neumann problem for nonlocal nonlinear diffusion equations [J].
Andreu, Fuensanta ;
Mazon, Jose M. ;
Rossi, Julio D. ;
Toledo, Julian .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) :189-215
[3]  
[Anonymous], 1997, ADV DIFFERENTIAL EQU, DOI DOI 10.1186/1687-1847-2013-125
[4]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[5]   A discrete convolution model for phase transitions [J].
Bates, PW ;
Chmaj, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) :281-305
[6]   Spatial effects in discrete generation population models [J].
Carrillo, C ;
Fife, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (02) :161-188
[7]  
Cazenave T., 1998, Oxford Lecture Series in Mathematics and Its Applications, 13
[8]   Asymptotic behavior for nonlocal diffusion equations [J].
Chasseigne, Emmanuel ;
Chaves, Manuela ;
Rossi, Julio D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03) :271-291
[9]   Almost periodic traveling waves of nonlocal evolution equations [J].
Chen, FX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (06) :807-838
[10]   Homoclinic solutions of an integral equation: Existence and stability [J].
Chmaj, A ;
Ren, XF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 155 (01) :17-43