Simultaneous compressed sensing and single-image super resolution for SAR image reconstruction

被引:1
作者
El-Ashkar, Alaa M. M. [1 ]
Taha, Taha El Sayed [1 ]
El-Fishawy, Adel S. S. [1 ]
Abd-Elnaby, Mohammed [2 ]
Abd El-Samie, Fathi E. E. [1 ,3 ]
El-Shafai, Walid [1 ,4 ]
机构
[1] Menoufia Univ, Fac Elect Engn, Dept Elect & Elect Commun, Menoufia 32952, Egypt
[2] Taif Univ, Coll Comp & Informat Technol, Dept Comp Engn, POB 11099, Taif 21944, Saudi Arabia
[3] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
[4] Prince Sultan Univ, Comp Sci Dept, Secur Engn Lab, Riyadh 11586, Saudi Arabia
关键词
SAR images; Image reconstruction; Compressed sensing; Single-image super-resolution; Cubic interpolation; UNCERTAINTY PRINCIPLES; RECOVERY;
D O I
10.1007/s11082-022-04407-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the most significant radar imaging types is Synthetic Aperture Radar (SAR), which is utilized in numerous fields and applications. Large size of SAR images, limited storage capacity and links with restricted capacity prompted the need to use compression techniques. The compression technique used in this paper is Compressed Sensing (CS) in the form of Multi-scale/multi-Resolution Kronecker Compressed Sensing (MRKCS). Detecting target existence in the received SAR images is a critical and challenging task. Enhancement through Single-IMage Super-Resolution (SIMSR) is a very good choice to enhance the decision making performance through reducing the error and false-alarm rates. The main objective of this work is to use a reliable compression-decompression technique by which high compression rates could be achieved, while retaining the data of interest. This is followed by an effective image enhancement technique in order to increase detectability from the received SAR images.
引用
收藏
页数:32
相关论文
共 55 条
  • [1] Davenport MA, 2009, Arxiv, DOI arXiv:0911.0736
  • [2] Enhancement of Infrared Images Using Super Resolution Techniques Based on Big Data Processing
    Abd El-Samie, Fathi E.
    Ashiba, Huda I.
    Shendy, H.
    Mansour, Hala M.
    Ahmed, Hossameldin M.
    Taha, Taha E.
    Dessouky, Moawad I.
    Elkordy, Mohamed F.
    Abd-Elnaby, Mohammed
    El-Fishawy, Adel S.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (9-10) : 5671 - 5692
  • [3] BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING
    Adcock, Ben
    Hansen, Anders C.
    Poon, Clarice
    Roman, Bogdan
    [J]. FORUM OF MATHEMATICS SIGMA, 2017, 5 : 1 - 84
  • [4] [Anonymous], 2012, 2012 IEEE INT C COMP
  • [5] CMT and PtSi FLIR systems for EUCLID RTP 8.1
    Armstrong, GR
    Packard, PD
    [J]. DESIGN AND ENGINEERING OF OPTICAL SYSTEMS, 1996, 2774 : 257 - 266
  • [6] Acquisition super resolution from infrared images using proposed techniques
    Ashiba, H., I
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 2329 - 2348
  • [7] Adaptive Least Squares Interpolation of Infrared Images
    Ashiba, H. I.
    Awadalla, K. H.
    El-Halfawy, S. M.
    Abd El-Samie, F. E.
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2011, 30 (03) : 543 - 551
  • [8] Compressive sensing
    Baraniuk, Richard G.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (04) : 118 - +
  • [9] Sparse Recovery From Combined Fusion Frame Measurements
    Boufounos, Petros
    Kutyniok, Gitta
    Rauhut, Holger
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3864 - 3876
  • [10] Synthetic aperture radar with dynamic metasurface antennas: a conceptual development
    Boyarsky, Michael
    Sleasman, Timothy
    Pulido-Mancera, Laura
    Fromenteze, Thomas
    Pedross-Engel, Andreas
    Watts, Claire M.
    Imani, Mohammadreza F.
    Reynolds, Matthew S.
    Smith, David R.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (05) : A22 - A36