New Fixed Point Results in Orthogonal B-Metric Spaces with Related Applications

被引:24
作者
Gnanaprakasam, Arul Joseph [1 ]
Mani, Gunaseelan [2 ]
Ege, Ozgur [3 ]
Aloqaily, Ahmad [4 ,5 ]
Mlaiki, Nabil [4 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Math, Kattankulathur 603203, India
[2] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, India
[3] Ege Univ, Dept Math, TR-35100 Izmir, Turkiye
[4] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[5] Western Sydney Univ, Sch Comp Data & Math Sci, Sydney, NSW 2150, Australia
关键词
fixed point; orthogonal b-metric space; orthogonal alpha-almost Istratescu contractions; Elzaki transform convolution; CONVEX CONTRACTION-MAPPINGS; THEOREMS;
D O I
10.3390/math11030677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we present the concept of orthogonal alpha-almost Istratescu contraction of types D and D* and prove some fixed point theorems on orthogonal b-metric spaces. We also provide an illustrative example to support our theorems. As an application, we establish the existence and uniqueness of the solution of the fractional differential equation and the solution of the integral equation using Elzaki transform.
引用
收藏
页数:18
相关论文
共 29 条
[1]   On common fixed points for α-F-contractions and applications [J].
Al-Rawashdeh, Ahmed ;
Aydi, Hassen ;
Felhi, Abdelbasset ;
Sahmim, Slah ;
Shatanawi, Wasfi .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :3445-3458
[2]  
[Anonymous], 2004, Nonlinear Anal. Forum
[3]  
Bakhtin I.A., 1989, Funct. Anal. Gos. Ped. Inst. Ulianowsk, V30, P26, DOI DOI 10.1039/AP9892600037
[4]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[5]  
Czerwik S., 1998, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, V46, P263
[6]  
Eshaghi Gordji M., 2017, J Linear Topol Algebra, V6, P251
[7]   Common Fixed-Points Technique for the Existence of a Solution to Fractional Integro-Differential Equations via Orthogonal Branciari Metric Spaces [J].
Gnanaprakasam, Arul Joseph ;
Nallaselli, Gunasekaran ;
Ul Haq, Absar ;
Mani, Gunaseelan ;
Baloch, Imran Abbas ;
Nonlaopon, Kamsing .
SYMMETRY-BASEL, 2022, 14 (09)
[8]   Solving a nonlinear integral equation via orthogonal metric space [J].
Gnanaprakasam, Arul Joseph ;
Mani, Gunaseelan ;
Lee, Jung Rye ;
Park, Choonkil .
AIMS MATHEMATICS, 2022, 7 (01) :1198-1210
[9]   Solving a Nonlinear Fredholm Integral Equation via an Orthogonal Metric [J].
Gnanaprakasam, Arul Joseph ;
Mani, Gunaseelan ;
Parvaneh, Vahid ;
Aydi, Hassen .
ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
[10]   ON ORTHOGONAL SETS AND BANACH FIXED POINT THEOREM [J].
Gordji, Madjid Eshaghi ;
Rameani, Maryam ;
De La Sen, Manuel ;
Cho, Yeol Je .
FIXED POINT THEORY, 2017, 18 (02) :569-578