Capsule Network With Multiscale Feature Fusion for Hidden Human Activity Classification

被引:13
作者
Wang, Xiang [1 ]
Wang, Yumiao [1 ]
Guo, Shisheng [1 ,2 ]
Kong, Lingjiang [1 ]
Cui, Guolong [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst, Quzhou 324000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Scattering; Radar; Convolutional neural networks; Ultra wideband radar; Spectrogram; Time-frequency analysis; Capsule network; deep learning; human activity classification; multiscale feature fusion (MFF); ultrawideband (UWB) radar; MICRO-DOPPLER CLASSIFICATION; NEURAL-NETWORK; UWB RADAR; DECOMPOSITION; SIGNATURES;
D O I
10.1109/TIM.2023.3238749
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article considers the problem of human activity classification behind the walls using ultrawideband (UWB) radar. The complex-valued multiscale feature fusion capsule network (CV-MCNet) is proposed, which consists of a feature extractor, a multiscale feature fusion (MFF) block, and a capsule block. Specifically, the feature extractor with two complex-valued convolutional layers is designed to extract the deep features from the range profiles. Then, the MFF block is developed to enrich the feature representation of the activity. Finally, a capsule block is applied to implicitly encode the spatial relationship among the features in vector form and aggregate the vectors to get accurate classification results. The proposed CV-MCNet is evaluated by real data, and the results show that it achieves better classification performance compared with the deep convolutional neural network (DCNN), convolutional autoencoder (CAE), and complex-valued convolutional neural network (CV-CNN).
引用
收藏
页数:12
相关论文
共 50 条
[41]   Radar-Based Human Activity Recognition Using Dual-Stream Spatial and Temporal Feature Fusion Network [J].
Li, Jianjun ;
Xu, Hongji ;
Zeng, Jiaqi ;
Ai, Wentao ;
Li, Shijie ;
Li, Xiaoman ;
Li, Xinya .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (02) :1835-1847
[42]   Multiscale Neighborhood Information Fusion Network for Classification of Remote Sensing LiDAR Images [J].
Dong, Jiao ;
Liu, Kaiqi ;
Han, Jiawei ;
Zhang, Mengmeng ;
Zhao, Xudong ;
Li, Wei ;
Xiong, Li ;
Rao, Mengbin .
IEEE SENSORS JOURNAL, 2024, 24 (10) :16601-16613
[43]   Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hyperspectral Image Classification [J].
Zhou, Hao ;
Luo, Fulin ;
Zhuang, Huiping ;
Weng, Zhenyu ;
Gong, Xiuwen ;
Lin, Zhiping .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[44]   Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification [J].
Li, Shutao ;
Hao, Qiaobo ;
Kang, Xudong ;
Benediktsson, Jon Atli .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) :3312-3324
[45]   A Deeply Supervised Convolutional Neural Network for Pavement Crack Detection With Multiscale Feature Fusion [J].
Qu, Zhong ;
Cao, Chong ;
Liu, Ling ;
Zhou, Dong-Yang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) :4890-4899
[46]   CapsGaNet: Deep Neural Network Based on Capsule and GRU for Human Activity Recognition [J].
Sun, Xiaojie ;
Xu, Hongji ;
Dong, Zheng ;
Shi, Leixin ;
Liu, Qiang ;
Li, Juan ;
Li, Tiankuo ;
Fan, Shidi ;
Wang, Yuhao .
IEEE SYSTEMS JOURNAL, 2022, 16 (04) :5845-5855
[47]   Parallel LSTM-CNN Network With Radar Multispectrogram for Human Activity Recognition [J].
Qian, Yujia ;
Chen, Chuan ;
Tang, Longzhen ;
Jia, Yong ;
Cui, Guolong .
IEEE SENSORS JOURNAL, 2023, 23 (02) :1308-1317
[48]   Automatic Thyroid Ultrasound Image Classification Using Feature Fusion Network [J].
Zhao, Xiaohui ;
Shen, Xueqin ;
Wan, Wenbo ;
Lu, Yuanyuan ;
Hu, Shidong ;
Xiao, Ruoxiu ;
Du, Xiaohui ;
Li, Junlai .
IEEE ACCESS, 2022, 10 :27917-27924
[49]   Hyperspectral Image Classification Based on Multibranch Adaptive Feature Fusion Network [J].
Li, Chen ;
Wang, Yi ;
Fang, Zhice ;
Li, Penglei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
[50]   Branch Feature Fusion Convolution Network for Remote Sensing Scene Classification [J].
Shi, Cuiping ;
Wang, Tao ;
Wang, Liguo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :5194-5210