Advances and challenges in tuning the reversibility & cyclability of room temperature sodium-sulfur and potassium-sulfur batteries with catalytic materials

被引:9
|
作者
Haridas, Anupriya K. [1 ]
Huang, Chun [2 ,3 ]
机构
[1] Kings Coll London, Dept Engn, London WC2R 2LS, England
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[3] Faraday Inst, Quad One, Becquerel Ave,Harwell Campus, Didcot OX11 0RA, England
基金
英国工程与自然科学研究理事会;
关键词
Na -S batteries; K -S batteries; Sulfur-based batteries; High energy density electrocatalyst; Redox mediation; Catalytic materials; TRANSITION-METAL NITRIDES; CONJUGATED POROUS POLYMER; CATHODE; CARBON; POLYSULFIDE; PERFORMANCE; CAPACITY; NANOCRYSTALS; DESIGN; HOST;
D O I
10.1016/j.mtener.2022.101228
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high theoretical energy density of room temperature sodium-sulfur and potassium-sulfur batteries (Na-S; 1274 Wh/kg, K-S; 914 Wh/kg; based on the mass of sulfur) due to the multi-electron transfer associated with the unique conversion chemistry of S and the natural abundance of Na, K, and S raw materials make them ideal candidates for large-scale energy storage applications beyond Li batteries. However, achieving good reversibility, cyclability, and active material utilization in Na-S and K-S bat-teries demands alleviation of the complex polysulfide dissolution and the shuttle phenomena during cycling. Rational employment of catalytic materials is beneficial to address these issues by facilitating effective polysulfide transformation and thereby accelerating the sluggish reaction kinetics. This review focuses on the roles and evolution of catalytic materials in polysulfide adsorption, catalytic conversion, and redox mediation in facilitating high-performing Na-S and K-S batteries. Specifically, the advances in tuning the reversibility and cyclability of Na-S and K-S batteries strategically with catalytic material-incorporated S-host cathodes, separators, and interlayers and the interaction of various catalytic mate -rials with the polysulfide species are discussed in the light of advanced characterization techniques. Lastly, the challenges and the plausible strategies for future research are elucidated. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Challenge and Strategies in Room Temperature Sodium-Sulfur Batteries: A Comparison with Lithium-Sulfur Batteries
    Lin, Liang
    Zhang, Chengkun
    Huang, Youzhang
    Zhuang, Yangping
    Fan, Mengjian
    Lin, Jie
    Wang, Laisen
    Xie, Qingshui
    Peng, Dong-Liang
    SMALL, 2022, 18 (43)
  • [22] Room temperature sodium-sulfur batteries as emerging energy source
    Kumar, Deepak
    Kuhar, Suman B.
    Kanchan, D. K.
    JOURNAL OF ENERGY STORAGE, 2018, 18 : 133 - 148
  • [23] Trends in the Development of Room-Temperature Sodium-Sulfur Batteries
    Novikova, S. A.
    Voropaeva, D. Yu.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2022, 58 (04) : 333 - 348
  • [24] Review and prospects for room-temperature sodium-sulfur batteries
    Chen, Peng
    Wang, Chengyin
    Wang, Tianyi
    MATERIALS RESEARCH LETTERS, 2022, 10 (11): : 691 - 719
  • [25] Strategies for Polysulfide Immobilization in Sulfur Cathodes for Room-Temperature Sodium-Sulfur Batteries
    Zhou, Jiahui
    Xu, Shengming
    Yang, Yue
    SMALL, 2021, 17 (32)
  • [26] Sulfur Copolymer: A New Cathode Structure for Room-Temperature Sodium-Sulfur Batteries
    Ghosh, Arnab
    Shukla, Swapnil
    Monisha, Monisha
    Kumar, Ajit
    Lochab, Bimlesh
    Mitra, Sagar
    ACS ENERGY LETTERS, 2017, 2 (10): : 2478 - 2485
  • [27] Ambient Temperature Sodium-Sulfur Batteries
    Manthiram, Arumugam
    Yu, Xingwen
    SMALL, 2015, 11 (18) : 2108 - 2114
  • [28] Potassium hydroxide activated carbon derived from albumen as an efficient sulfur host for room temperature sodium-sulfur batteries
    Reddy, B. S.
    Reddy, N. S.
    Nam, Sang-Yong
    Ahn, Hyo-Jun
    Ahn, Jou-Hyeon
    Cho, Kwon-Koo
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [29] Confined and covalent sulfur for stable room temperature potassium-sulfur battery
    Ma, Ruifang
    Fan, Ling
    Wang, Jue
    Lu, Bingan
    ELECTROCHIMICA ACTA, 2019, 293 : 191 - 198
  • [30] An Investigation into Electrolytes and Cathodes for Room-Temperature Sodium-Sulfur Batteries
    Adeoye, Hakeem Ademola
    Tennison, Stephen
    Watts, John F.
    Lekakou, Constantina
    BATTERIES-BASEL, 2024, 10 (06):