Advances and challenges in tuning the reversibility & cyclability of room temperature sodium-sulfur and potassium-sulfur batteries with catalytic materials

被引:11
作者
Haridas, Anupriya K. [1 ]
Huang, Chun [2 ,3 ]
机构
[1] Kings Coll London, Dept Engn, London WC2R 2LS, England
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[3] Faraday Inst, Quad One, Becquerel Ave,Harwell Campus, Didcot OX11 0RA, England
基金
英国工程与自然科学研究理事会;
关键词
Na -S batteries; K -S batteries; Sulfur-based batteries; High energy density electrocatalyst; Redox mediation; Catalytic materials; TRANSITION-METAL NITRIDES; CONJUGATED POROUS POLYMER; CATHODE; CARBON; POLYSULFIDE; PERFORMANCE; CAPACITY; NANOCRYSTALS; DESIGN; HOST;
D O I
10.1016/j.mtener.2022.101228
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high theoretical energy density of room temperature sodium-sulfur and potassium-sulfur batteries (Na-S; 1274 Wh/kg, K-S; 914 Wh/kg; based on the mass of sulfur) due to the multi-electron transfer associated with the unique conversion chemistry of S and the natural abundance of Na, K, and S raw materials make them ideal candidates for large-scale energy storage applications beyond Li batteries. However, achieving good reversibility, cyclability, and active material utilization in Na-S and K-S bat-teries demands alleviation of the complex polysulfide dissolution and the shuttle phenomena during cycling. Rational employment of catalytic materials is beneficial to address these issues by facilitating effective polysulfide transformation and thereby accelerating the sluggish reaction kinetics. This review focuses on the roles and evolution of catalytic materials in polysulfide adsorption, catalytic conversion, and redox mediation in facilitating high-performing Na-S and K-S batteries. Specifically, the advances in tuning the reversibility and cyclability of Na-S and K-S batteries strategically with catalytic material-incorporated S-host cathodes, separators, and interlayers and the interaction of various catalytic mate -rials with the polysulfide species are discussed in the light of advanced characterization techniques. Lastly, the challenges and the plausible strategies for future research are elucidated. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:18
相关论文
共 105 条
[1]   Porous Heteroatom-Doped Ti3C2Tx MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium-Sulfur Batteries [J].
Bao, Weizhai ;
Wang, Ronghao ;
Qian, Chengfei ;
Zhang, Zherui ;
Wu, Ruijun ;
Zhang, Yuhao ;
Liu, Fangyang ;
Li, Jingfa ;
Wang, Guoxiu .
ACS NANO, 2021, 15 (10) :16207-16217
[2]   Boosting Performance of Na-S Batteries Using Sulfur-Doped Ti3C2Tx MXene Nanosheets with a Strong Affinity to Sodium Polysulfides [J].
Bao, Weizhai ;
Shuck, Christopher E. ;
Zhang, Wenxue ;
Guo, Xin ;
Gogotsi, Yury ;
Wang, Guoxiu .
ACS NANO, 2019, 13 (10) :11500-11509
[3]   Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes [J].
Bauer, I. ;
Kohl, M. ;
Althues, H. ;
Kaskel, S. .
CHEMICAL COMMUNICATIONS, 2014, 50 (24) :3208-3210
[4]   Investigation of the Effect of Using Al2O3-Nafion Barrier on Room-Temperature Na-S Batteries [J].
Cengiz, Elif Ceylan ;
Erdol, Zeynep ;
Sakar, Baha ;
Aslan, Ayse ;
Ata, Ali ;
Ozturk, Osman ;
Demir-Cakan, Rezan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (28) :15120-15126
[5]   Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective [J].
Chen, Hao ;
Wu, Zhenzhen ;
Zheng, Mengting ;
Liu, Tongchao ;
Yan, Cheng ;
Lu, Jun ;
Zhang, Shanqing .
MATERIALS TODAY, 2022, 52 :364-388
[6]   Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping [J].
Chen, Xin ;
Peng, Linfeng ;
Wang, Lihui ;
Yang, Jiaqiang ;
Hao, Zhangxiang ;
Xiang, Jingwei ;
Yuan, Kai ;
Huang, Yunhui ;
Shan, Bin ;
Yuan, Lixia ;
Xie, Jia .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Theoretical Investigation of the Electrochemical Performance of Transition Metal Nitrides for Lithium-Sulfur Batteries [J].
Chen, Zijin ;
Lv, Wei ;
Kang, Feiyu ;
Li, Jia .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (41) :25025-25030
[8]   Polysulfide Catalytic Materials for Fast-Kinetic Metal-Sulfur Batteries: Principles and Active Centers [J].
Cheng, Menghao ;
Yan, Rui ;
Yang, Zhao ;
Tao, Xuefeng ;
Ma, Tian ;
Cao, Sujiao ;
Ran, Fen ;
Li, Shuang ;
Yang, Wei ;
Cheng, Chong .
ADVANCED SCIENCE, 2022, 9 (02)
[9]   Current Status and Future Prospects of Metal-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2019, 31 (27)
[10]   Review of Emerging Potassium-Sulfur Batteries [J].
Ding, Jia ;
Zhang, Hao ;
Fan, Wenjie ;
Zhong, Cheng ;
Hu, Wenbin ;
Mitlin, David .
ADVANCED MATERIALS, 2020, 32 (23)