Automatic Detection of Microaneurysms in Fundus Images

被引:2
作者
Astorga, Jesus Eduardo Ochoa [1 ]
Wang, Linni [2 ]
Yamada, Shuhei [1 ]
Fujiwara, Yusuke [1 ]
Du, Weiwei [1 ]
Peng, Yahui [3 ]
机构
[1] Kyoto Inst Technol, Kyoto, Japan
[2] Tianjin Med Univ Eye Hosp, Tianjin, Peoples R China
[3] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
关键词
Computer Aided Diagnosis; Deep Learning; Diabetic Retinopathy; Retinal Disease;
D O I
10.4018/IJSI.315658
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Early detection and treatment of diabetic retinopathy can delay blindness and improve quality of life for diabetic patients. It is difficult to detect early symptoms of diabetic retinopathy, which is presented by few microaneurysms in fundus images. This study proposes an algorithm to detect microaneurysms in fundus images automatically. The proposal includes microaneurysms segmentation by U-Net model and their false positives removal by ResNet model. The effectiveness of the proposal is evaluated with the public database IDRiD and E-ophtha by the area under precision recall curve (AUPR). 90% of microaneurysms can be detected at early stages of diabetic retinopathy. This proposal outperforms previous methods based in AUPR evaluation.
引用
收藏
页码:26 / 26
页数:1
相关论文
共 20 条
[1]  
[Anonymous], 2006, P 23 INT C MACH LEAR
[2]  
Bhatia K, 2016, PROCEEDINGS ON 2016 2ND INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), P347, DOI 10.1109/NGCT.2016.7877439
[3]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]   Microaneurysm detection in fundus images using a two-step convolutional neural network [J].
Eftekhari, Noushin ;
Pourreza, Hamid-Reza ;
Masoudi, Mojtaba ;
Ghiasi-Shirazi, Kamaledin ;
Saeedi, Ehsan .
BIOMEDICAL ENGINEERING ONLINE, 2019, 18 (1)
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[8]  
Jiang HY, 2019, IEEE ENG MED BIO, P2045, DOI [10.1109/EMBC.2019.8857160, 10.1109/embc.2019.8857160]
[9]   Mathematical morphology for microaneurysm detection in fundus images [J].
Joshi, Shilpa ;
Karule, P. T. .
EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2020, 30 (05) :1135-1142
[10]  
Kumar S, 2018, 2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), P359, DOI 10.1109/SPIN.2018.8474264