Compressing branch-and-bound trees

被引:0
作者
Munoz, Gonzalo [1 ]
Paat, Joseph [2 ]
Xavier, Alinson S. [3 ]
机构
[1] Univ OHiggins, Inst Engn Sci, Rancagua, Chile
[2] Univ British Columbia, Sauder Sch Business, Vancouver, BC, Canada
[3] Energy Syst & Infrastruct Anal Div, Argonne Natl Lab, Lemont, IL USA
关键词
90C10; 90C57; INTEGER; DISJUNCTIONS;
D O I
10.1007/s10107-024-02080-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A branch-and-bound (BB) tree certifies a dual bound on the value of an integer program. In this work, we introduce the tree compression problem (TCP): Given a BB treeTthat certifies a dual bound, can we obtain a smaller tree with the same (or stronger) bound by either (1) applying a different disjunction at some node inTor (2) removing leaves fromT? We believe such post-hoc analysis of BB trees may assist in identifying helpful general disjunctions in BB algorithms. We initiate our study by considering computational complexity and limitations of TCP. We then conduct experiments to evaluate the compressibility of realistic branch-and-bound trees generated by commonly-used branching strategies, using both an exact and a heuristic compression algorithm.
引用
收藏
页码:669 / 694
页数:26
相关论文
共 32 条
  • [1] Hard equality constrained integer knapsacks
    Aardal, K
    Lenstra, AK
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (03) : 724 - 738
  • [2] Branching rules revisited
    Achterberg, T
    Koch, T
    Martin, A
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (01) : 42 - 54
  • [3] Basu A., 2021, P IPCO
  • [4] Beame P., 2018, 9 INN THEOR COMP SCI, V94
  • [5] Bixby R., 1992, MIPLIB: A test set of mixed integer programming problems
  • [6] Verifying Integer Programming Results
    Cheung, Kevin K. H.
    Gleixner, Ambros
    Steffy, Daniel E.
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2017, 2017, 10328 : 148 - 160
  • [7] HARD KNAPSACK-PROBLEMS
    CHVATAL, V
    [J]. OPERATIONS RESEARCH, 1980, 28 (06) : 1402 - 1411
  • [8] Improved strategies for branching on general disjunctions
    Cornuejols, G.
    Liberti, L.
    Nannicini, G.
    [J]. MATHEMATICAL PROGRAMMING, 2011, 130 (02) : 225 - 247
  • [9] Dadush Daniel, 2020, CCC '20: Proceedings of the 35th Computational Complexity Conference, DOI 10.4230/LIPIcs.CCC.2020.34
  • [10] Dey S., 2021, arXiv