Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study

被引:6
|
作者
Vasilache, Ingrid-Andrada [1 ]
Scripcariu, Ioana-Sadyie [1 ]
Doroftei, Bogdan [1 ]
Bernad, Robert Leonard [2 ]
Carauleanu, Alexandru [1 ]
Socolov, Demetra [1 ]
Melinte-Popescu, Alina-Sinziana [3 ]
Vicoveanu, Petronela [1 ]
Harabor, Valeriu [3 ]
Mihalceanu, Elena [1 ]
Melinte-Popescu, Marian [4 ,5 ]
Harabor, Anamaria [3 ]
Bernad, Elena [3 ,6 ]
Nemescu, Dragos [1 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Mother & Child Care, Iasi 700115, Romania
[2] Politech Univ Timisoara, Fac Comp Sci, Timisoara 300006, Romania
[3] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Mother & Newborn Care, Suceava 720229, Romania
[4] Univ Galatzi, Fac Med & Pharm, Clin & Surg Dept, Galati 800216, Romania
[5] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Internal Med, Suceava 720229, Romania
[6] Victor Babes Univ Med & Pharm, Fac Med, Dept Obstet Gynecol 2, Timisoara 300041, Romania
关键词
preeclampsia; intrauterine growth restriction; prediction; machine learning; screening; MANAGEMENT; DIAGNOSIS; CONSENSUS;
D O I
10.3390/diagnostics14040453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
(1) Background: Prenatal care providers face a continuous challenge in screening for intrauterine growth restriction (IUGR) and preeclampsia (PE). In this study, we aimed to assess and compare the predictive accuracy of four machine learning algorithms in predicting the occurrence of PE, IUGR, and their associations in a group of singleton pregnancies; (2) Methods: This observational prospective study included 210 singleton pregnancies that underwent first trimester screenings at our institution. We computed the predictive performance of four machine learning-based methods, namely decision tree (DT), naive Bayes (NB), support vector machine (SVM), and random forest (RF), by incorporating clinical and paraclinical data; (3) Results: The RF algorithm showed superior performance for the prediction of PE (accuracy: 96.3%), IUGR (accuracy: 95.9%), and its subtypes (early onset IUGR, accuracy: 96.2%, and late-onset IUGR, accuracy: 95.2%), as well as their association (accuracy: 95.1%). Both SVM and NB similarly predicted IUGR (accuracy: 95.3%), while SVM outperformed NB (accuracy: 95.8 vs. 94.7%) in predicting PE; (4) Conclusions: The integration of machine learning-based algorithms in the first-trimester screening of PE and IUGR could improve the overall detection rate of these disorders, but this hypothesis should be confirmed in larger cohorts of pregnant patients from various geographical areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A Machine Learning Approach to Monitor the Emergence of Late Intrauterine Growth Restriction
    Pini, Nicolo
    Lucchini, Maristella
    Esposito, Giuseppina
    Tagliaferri, Salvatore
    Campanile, Marta
    Magenes, Giovanni
    Signorini, Maria G.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [32] Machine learning-based prediction of breast cancer growth rate in vivo
    Shristi Bhattarai
    Sergey Klimov
    Mohammed A. Aleskandarany
    Helen Burrell
    Anthony Wormall
    Andrew R. Green
    Padmashree Rida
    Ian O. Ellis
    Remus M. Osan
    Emad A. Rakha
    Ritu Aneja
    British Journal of Cancer, 2019, 121 : 497 - 504
  • [33] A machine learning-based diabetes risk prediction modeling study
    Ming, Jiexiu
    Xu, Junyi
    Zhang, Miaomiao
    Li, Ningyu
    Yan, Xu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 363 - 369
  • [34] Machine learning-based prediction of breast cancer growth rate in vivo
    Bhattarai, Shristi
    Klimov, Sergey
    Aleskandarany, Mohammed A.
    Burrell, Helen
    Wormall, Anthony
    Green, Andrew R.
    Rida, Padmashree
    Ellis, Ian O.
    Osan, Remus M.
    Rakha, Emad A.
    Aneja, Ritu
    BRITISH JOURNAL OF CANCER, 2019, 121 (06) : 497 - 504
  • [35] Prediction of growth and feed efficiency in mink using machine learning algorithms
    Shirzadifar, A.
    Manafiazar, G.
    Davoudi, P.
    Do, D.
    Hu, G.
    Miar, Y.
    ANIMAL, 2025, 19 (02)
  • [36] Machine learning-based approach for fatigue crack growth prediction using acoustic emission technique
    Chai, Mengyu
    Liu, Pan
    He, Yuhang
    Han, Zelin
    Duan, Quan
    Song, Yan
    Zhang, Zaoxiao
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (08) : 2784 - 2797
  • [37] Machine learning-based prediction of Clostridium growth in pork meat using explainable artificial intelligence
    Ince, Volkan
    Bader-El-Den, Mohamed
    Alderton, Jack
    Arabikhan, Farzad
    Sari, Omer Faruk
    Sansom, Annette
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2025,
  • [38] MACHINE LEARNING-BASED PREDICTION OF ICU COMPLICATIONS USING MEDICATION DATA: A VALIDATION STUDY
    Smith, Susan
    Zhao, Bokai
    Deng, Shiyuan
    Hu, Mengxuan
    Zhang, Tianyi
    Kong, Yanlei
    Shen, Ye
    Li, Sheng
    Murphy, David
    Murray, Brian
    Kamaleswaran, Rishikesan
    Chen, Xianyan
    Devlin, John
    Sikora, Andrea
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [39] Evaluation of a Machine Learning-Based Dysphagia Prediction Tool in Clinical Routine: A Prospective Observational Cohort Study
    Jauk, Stefanie
    Kramer, Diether
    Veeranki, Sai Pavan Kumar
    Siml-Fraissler, Angelika
    Lenz-Waldbauer, Angelika
    Tax, Ewald
    Leodolter, Werner
    Gugatschka, Markus
    DYSPHAGIA, 2023, 38 (04) : 1238 - 1246
  • [40] Evaluation of a Machine Learning-Based Dysphagia Prediction Tool in Clinical Routine: A Prospective Observational Cohort Study
    Stefanie Jauk
    Diether Kramer
    Sai Pavan Kumar Veeranki
    Angelika Siml-Fraissler
    Angelika Lenz-Waldbauer
    Ewald Tax
    Werner Leodolter
    Markus Gugatschka
    Dysphagia, 2023, 38 : 1238 - 1246