Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study

被引:7
作者
Vasilache, Ingrid-Andrada [1 ]
Scripcariu, Ioana-Sadyie [1 ]
Doroftei, Bogdan [1 ]
Bernad, Robert Leonard [2 ]
Carauleanu, Alexandru [1 ]
Socolov, Demetra [1 ]
Melinte-Popescu, Alina-Sinziana [3 ]
Vicoveanu, Petronela [1 ]
Harabor, Valeriu [3 ]
Mihalceanu, Elena [1 ]
Melinte-Popescu, Marian [4 ,5 ]
Harabor, Anamaria [3 ]
Bernad, Elena [3 ,6 ]
Nemescu, Dragos [1 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Mother & Child Care, Iasi 700115, Romania
[2] Politech Univ Timisoara, Fac Comp Sci, Timisoara 300006, Romania
[3] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Mother & Newborn Care, Suceava 720229, Romania
[4] Univ Galatzi, Fac Med & Pharm, Clin & Surg Dept, Galati 800216, Romania
[5] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Internal Med, Suceava 720229, Romania
[6] Victor Babes Univ Med & Pharm, Fac Med, Dept Obstet Gynecol 2, Timisoara 300041, Romania
关键词
preeclampsia; intrauterine growth restriction; prediction; machine learning; screening; MANAGEMENT; DIAGNOSIS; CONSENSUS;
D O I
10.3390/diagnostics14040453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
(1) Background: Prenatal care providers face a continuous challenge in screening for intrauterine growth restriction (IUGR) and preeclampsia (PE). In this study, we aimed to assess and compare the predictive accuracy of four machine learning algorithms in predicting the occurrence of PE, IUGR, and their associations in a group of singleton pregnancies; (2) Methods: This observational prospective study included 210 singleton pregnancies that underwent first trimester screenings at our institution. We computed the predictive performance of four machine learning-based methods, namely decision tree (DT), naive Bayes (NB), support vector machine (SVM), and random forest (RF), by incorporating clinical and paraclinical data; (3) Results: The RF algorithm showed superior performance for the prediction of PE (accuracy: 96.3%), IUGR (accuracy: 95.9%), and its subtypes (early onset IUGR, accuracy: 96.2%, and late-onset IUGR, accuracy: 95.2%), as well as their association (accuracy: 95.1%). Both SVM and NB similarly predicted IUGR (accuracy: 95.3%), while SVM outperformed NB (accuracy: 95.8 vs. 94.7%) in predicting PE; (4) Conclusions: The integration of machine learning-based algorithms in the first-trimester screening of PE and IUGR could improve the overall detection rate of these disorders, but this hypothesis should be confirmed in larger cohorts of pregnant patients from various geographical areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction
    Zhong, Yan
    Tuuli, Methodius
    Odibo, Anthony O.
    PRENATAL DIAGNOSIS, 2010, 30 (04) : 293 - 308
  • [22] Using emergency department triage for machine learning-based admission and mortality prediction
    Tschoellitsch, Thomas
    Seidl, Philipp
    Bock, Carl
    Maletzky, Alexander
    Moser, Philipp
    Thumfart, Stefan
    Giretzlehner, Michael
    Hochreiter, Sepp
    Meier, Jens
    EUROPEAN JOURNAL OF EMERGENCY MEDICINE, 2023, 30 (06) : 408 - 416
  • [23] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [24] Machine Learning-Based Prediction of Stroke in Emergency Departments
    Abedi, Vida
    Misra, Debdipto
    Chaudhary, Durgesh
    Avula, Venkatesh
    Schirmer, Clemens M.
    Li, Jiang
    Zand, Ramin
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2024, 17
  • [25] Machine Learning-Based Precipitation Prediction Using Cloud Properties
    Yakubu, Abdulaziz Tunde
    Abayomi, Abdultaofeek
    Chetty, Naven
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 243 - 252
  • [26] A Machine Learning Approach to Monitor the Emergence of Late Intrauterine Growth Restriction
    Pini, Nicolo
    Lucchini, Maristella
    Esposito, Giuseppina
    Tagliaferri, Salvatore
    Campanile, Marta
    Magenes, Giovanni
    Signorini, Maria G.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [27] Multiple disease prediction using Machine learning algorithms
    Arumugam K.
    Naved M.
    Shinde P.P.
    Leiva-Chauca O.
    Huaman-Osorio A.
    Gonzales-Yanac T.
    Materials Today: Proceedings, 2023, 80 : 3682 - 3685
  • [28] Diabetes Prediction Using Machine Learning Algorithms and Ontology
    El Massari H.
    Sabouri Z.
    Mhammedi S.
    Gherabi N.
    Journal of ICT Standardization, 2022, 10 (02): : 319 - 338
  • [29] Mortality prediction in patients with hyperglycaemic crisis using explainable machine learning: a prospective, multicentre study based on tertiary hospitals
    Xie, Puguang
    Yang, Cheng
    Yang, Gangyi
    Jiang, Youzhao
    He, Min
    Jiang, Xiaoyan
    Chen, Yan
    Deng, Liling
    Wang, Min
    Armstrong, David G. G.
    Ma, Yu
    Deng, Wuquan
    DIABETOLOGY & METABOLIC SYNDROME, 2023, 15 (01)
  • [30] A machine learning-based diabetes risk prediction modeling study
    Ming, Jiexiu
    Xu, Junyi
    Zhang, Miaomiao
    Li, Ningyu
    Yan, Xu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 363 - 369