Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study

被引:6
|
作者
Vasilache, Ingrid-Andrada [1 ]
Scripcariu, Ioana-Sadyie [1 ]
Doroftei, Bogdan [1 ]
Bernad, Robert Leonard [2 ]
Carauleanu, Alexandru [1 ]
Socolov, Demetra [1 ]
Melinte-Popescu, Alina-Sinziana [3 ]
Vicoveanu, Petronela [1 ]
Harabor, Valeriu [3 ]
Mihalceanu, Elena [1 ]
Melinte-Popescu, Marian [4 ,5 ]
Harabor, Anamaria [3 ]
Bernad, Elena [3 ,6 ]
Nemescu, Dragos [1 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Mother & Child Care, Iasi 700115, Romania
[2] Politech Univ Timisoara, Fac Comp Sci, Timisoara 300006, Romania
[3] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Mother & Newborn Care, Suceava 720229, Romania
[4] Univ Galatzi, Fac Med & Pharm, Clin & Surg Dept, Galati 800216, Romania
[5] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Internal Med, Suceava 720229, Romania
[6] Victor Babes Univ Med & Pharm, Fac Med, Dept Obstet Gynecol 2, Timisoara 300041, Romania
关键词
preeclampsia; intrauterine growth restriction; prediction; machine learning; screening; MANAGEMENT; DIAGNOSIS; CONSENSUS;
D O I
10.3390/diagnostics14040453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
(1) Background: Prenatal care providers face a continuous challenge in screening for intrauterine growth restriction (IUGR) and preeclampsia (PE). In this study, we aimed to assess and compare the predictive accuracy of four machine learning algorithms in predicting the occurrence of PE, IUGR, and their associations in a group of singleton pregnancies; (2) Methods: This observational prospective study included 210 singleton pregnancies that underwent first trimester screenings at our institution. We computed the predictive performance of four machine learning-based methods, namely decision tree (DT), naive Bayes (NB), support vector machine (SVM), and random forest (RF), by incorporating clinical and paraclinical data; (3) Results: The RF algorithm showed superior performance for the prediction of PE (accuracy: 96.3%), IUGR (accuracy: 95.9%), and its subtypes (early onset IUGR, accuracy: 96.2%, and late-onset IUGR, accuracy: 95.2%), as well as their association (accuracy: 95.1%). Both SVM and NB similarly predicted IUGR (accuracy: 95.3%), while SVM outperformed NB (accuracy: 95.8 vs. 94.7%) in predicting PE; (4) Conclusions: The integration of machine learning-based algorithms in the first-trimester screening of PE and IUGR could improve the overall detection rate of these disorders, but this hypothesis should be confirmed in larger cohorts of pregnant patients from various geographical areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Placental Growth Factor for the Prediction of Adverse Outcomes in Patients with Suspected Preeclampsia or Intrauterine Growth Restriction
    Sibiude, Jeanne
    Guibourdenche, Jean
    Dionne, Marie-Danielle
    Le Ray, Camille
    Anselem, Olivia
    Serreau, Raphael
    Goffinet, Francois
    Tsatsaris, Vassilis
    PLOS ONE, 2012, 7 (11):
  • [22] Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study
    Yoshihiko Raita
    Carlos A. Camargo
    Charles G. Macias
    Jonathan M. Mansbach
    Pedro A. Piedra
    Stephen C. Porter
    Stephen J. Teach
    Kohei Hasegawa
    Scientific Reports, 10
  • [23] Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study
    Raita, Yoshihiko
    Camargo, Carlos A., Jr.
    Macias, Charles G.
    Mansbach, Jonathan M.
    Piedra, Pedro A.
    Porter, Stephen C.
    Teach, Stephen J.
    Hasegawa, Kohei
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [24] First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction
    Zhong, Yan
    Tuuli, Methodius
    Odibo, Anthony O.
    PRENATAL DIAGNOSIS, 2010, 30 (04) : 293 - 308
  • [25] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [26] Machine learning-based prediction of response to growth hormone treatment in Turner syndrome: the LG Growth Study
    Jung, Mo Kyung
    Yu, Jeesuk
    Lee, Ji-Eun
    Kim, Se Young
    Kim, Hae Soon
    Yoo, Eun-Gyong
    JOURNAL OF PEDIATRIC ENDOCRINOLOGY & METABOLISM, 2020, 33 (01): : 71 - 78
  • [27] Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study
    Raia-Barjat, Tiphaine
    Prieux, Carole
    Gris, Jean-Christophe
    Chapelle, Celine
    Laporte, Silvy
    Chauleur, Celine
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2019, 32 (02): : 248 - 257
  • [28] Prediction model of preeclampsia using machine learning based methods: a population based cohort study in China
    Li, Taishun
    Xu, Mingyang
    Wang, Yuan
    Wang, Ya
    Tang, Huirong
    Duan, Honglei
    Zhao, Guangfeng
    Zheng, Mingming
    Hu, Yali
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [29] Machine Learning-Based Precipitation Prediction Using Cloud Properties
    Yakubu, Abdulaziz Tunde
    Abayomi, Abdultaofeek
    Chetty, Naven
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 243 - 252
  • [30] Machine learning-based intrusion detection algorithms
    Tang, Hua
    Cao, Zhuolin
    Journal of Computational Information Systems, 2009, 5 (06): : 1825 - 1831