Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study

被引:7
作者
Vasilache, Ingrid-Andrada [1 ]
Scripcariu, Ioana-Sadyie [1 ]
Doroftei, Bogdan [1 ]
Bernad, Robert Leonard [2 ]
Carauleanu, Alexandru [1 ]
Socolov, Demetra [1 ]
Melinte-Popescu, Alina-Sinziana [3 ]
Vicoveanu, Petronela [1 ]
Harabor, Valeriu [3 ]
Mihalceanu, Elena [1 ]
Melinte-Popescu, Marian [4 ,5 ]
Harabor, Anamaria [3 ]
Bernad, Elena [3 ,6 ]
Nemescu, Dragos [1 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Mother & Child Care, Iasi 700115, Romania
[2] Politech Univ Timisoara, Fac Comp Sci, Timisoara 300006, Romania
[3] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Mother & Newborn Care, Suceava 720229, Romania
[4] Univ Galatzi, Fac Med & Pharm, Clin & Surg Dept, Galati 800216, Romania
[5] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Internal Med, Suceava 720229, Romania
[6] Victor Babes Univ Med & Pharm, Fac Med, Dept Obstet Gynecol 2, Timisoara 300041, Romania
关键词
preeclampsia; intrauterine growth restriction; prediction; machine learning; screening; MANAGEMENT; DIAGNOSIS; CONSENSUS;
D O I
10.3390/diagnostics14040453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
(1) Background: Prenatal care providers face a continuous challenge in screening for intrauterine growth restriction (IUGR) and preeclampsia (PE). In this study, we aimed to assess and compare the predictive accuracy of four machine learning algorithms in predicting the occurrence of PE, IUGR, and their associations in a group of singleton pregnancies; (2) Methods: This observational prospective study included 210 singleton pregnancies that underwent first trimester screenings at our institution. We computed the predictive performance of four machine learning-based methods, namely decision tree (DT), naive Bayes (NB), support vector machine (SVM), and random forest (RF), by incorporating clinical and paraclinical data; (3) Results: The RF algorithm showed superior performance for the prediction of PE (accuracy: 96.3%), IUGR (accuracy: 95.9%), and its subtypes (early onset IUGR, accuracy: 96.2%, and late-onset IUGR, accuracy: 95.2%), as well as their association (accuracy: 95.1%). Both SVM and NB similarly predicted IUGR (accuracy: 95.3%), while SVM outperformed NB (accuracy: 95.8 vs. 94.7%) in predicting PE; (4) Conclusions: The integration of machine learning-based algorithms in the first-trimester screening of PE and IUGR could improve the overall detection rate of these disorders, but this hypothesis should be confirmed in larger cohorts of pregnant patients from various geographical areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study
    Raia-Barjat, Tiphaine
    Prieux, Carole
    Gris, Jean-Christophe
    Chapelle, Celine
    Laporte, Silvy
    Chauleur, Celine
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2019, 32 (02) : 248 - 257
  • [12] Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women
    Gomez-Jemes, Lola
    Madalina Oprescu, Andreea
    Chimenea-Toscano, Angel
    Garcia-Diaz, Lutgardo
    Romero-Ternero, Maria del Carmen
    ELECTRONICS, 2022, 11 (19)
  • [13] Prediction model of preeclampsia using machine learning based methods: a population based cohort study in China
    Li, Taishun
    Xu, Mingyang
    Wang, Yuan
    Wang, Ya
    Tang, Huirong
    Duan, Honglei
    Zhao, Guangfeng
    Zheng, Mingming
    Hu, Yali
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [14] Prediction of Preeclampsia or intrauterine growth restriction by second trimester serum screening and uterine Doppler velocimetry
    Audibert, F
    Benchimol, Y
    Benattar, C
    Champagne, C
    Frydman, R
    FETAL DIAGNOSIS AND THERAPY, 2005, 20 (01) : 48 - 53
  • [15] NT-proBNP levels in preeclampsia, intrauterine growth restriction as well as in the prediction on an imminent delivery
    Lafuente-Ganuza, Paula
    Carretero, Fran
    Lequerica-Fernandez, Paloma
    Fernandez-Bernardo, Ana
    Escudero, Ana, I
    de la Hera-Galarza, Jesus M.
    Garcia-Iglesias, Daniel
    Alvarez-Velasco, Rut
    Alvarez, Francisco, V
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2021, 59 (06) : 1077 - 1085
  • [17] The importance of repeated measurements of the sFlt-1/PlGF ratio for the prediction of preeclampsia and intrauterine growth restriction
    Schoofs, Katharina
    Grittner, Ulrike
    Engels, Theresa
    Pape, Juliane
    Denk, Barbara
    Henrich, Wolfgang
    Verlohren, Stefan
    JOURNAL OF PERINATAL MEDICINE, 2014, 42 (01) : 61 - 68
  • [18] Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review
    Aljameel, Sumayh S.
    Alzahrani, Manar
    Almusharraf, Reem
    Altukhais, Majd
    Alshaia, Sadeem
    Sahlouli, Hanan
    Aslam, Nida
    Khan, Irfan Ullah
    Alabbad, Dina A.
    Alsumayt, Albandari
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (01)
  • [19] The clinical efficacy of a novel smartphone-based salivary self-test for the prediction of pre-eclampsia, pregnancy-induced hypertension and intrauterine growth restriction: a prospective cohort study
    Puschl, Ida Catharina
    Bonde, Lisbeth
    Gerds, Thomas Alexander
    Tackney, Mia Sato
    Quest, James
    Sorensen, Bjarke Lund
    Macklon, Nicholas Stephen
    FRONTIERS IN MEDICINE, 2024, 11
  • [20] Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study
    Raita, Yoshihiko
    Camargo, Carlos A., Jr.
    Macias, Charles G.
    Mansbach, Jonathan M.
    Piedra, Pedro A.
    Porter, Stephen C.
    Teach, Stephen J.
    Hasegawa, Kohei
    SCIENTIFIC REPORTS, 2020, 10 (01)