Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study

被引:10
作者
Vasilache, Ingrid-Andrada [1 ]
Scripcariu, Ioana-Sadyie [1 ]
Doroftei, Bogdan [1 ]
Bernad, Robert Leonard [2 ]
Carauleanu, Alexandru [1 ]
Socolov, Demetra [1 ]
Melinte-Popescu, Alina-Sinziana [3 ]
Vicoveanu, Petronela [1 ]
Harabor, Valeriu [3 ]
Mihalceanu, Elena [1 ]
Melinte-Popescu, Marian [4 ,5 ]
Harabor, Anamaria [3 ]
Bernad, Elena [3 ,6 ]
Nemescu, Dragos [1 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Mother & Child Care, Iasi 700115, Romania
[2] Politech Univ Timisoara, Fac Comp Sci, Timisoara 300006, Romania
[3] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Mother & Newborn Care, Suceava 720229, Romania
[4] Univ Galatzi, Fac Med & Pharm, Clin & Surg Dept, Galati 800216, Romania
[5] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Internal Med, Suceava 720229, Romania
[6] Victor Babes Univ Med & Pharm, Fac Med, Dept Obstet Gynecol 2, Timisoara 300041, Romania
关键词
preeclampsia; intrauterine growth restriction; prediction; machine learning; screening; MANAGEMENT; DIAGNOSIS; CONSENSUS;
D O I
10.3390/diagnostics14040453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
(1) Background: Prenatal care providers face a continuous challenge in screening for intrauterine growth restriction (IUGR) and preeclampsia (PE). In this study, we aimed to assess and compare the predictive accuracy of four machine learning algorithms in predicting the occurrence of PE, IUGR, and their associations in a group of singleton pregnancies; (2) Methods: This observational prospective study included 210 singleton pregnancies that underwent first trimester screenings at our institution. We computed the predictive performance of four machine learning-based methods, namely decision tree (DT), naive Bayes (NB), support vector machine (SVM), and random forest (RF), by incorporating clinical and paraclinical data; (3) Results: The RF algorithm showed superior performance for the prediction of PE (accuracy: 96.3%), IUGR (accuracy: 95.9%), and its subtypes (early onset IUGR, accuracy: 96.2%, and late-onset IUGR, accuracy: 95.2%), as well as their association (accuracy: 95.1%). Both SVM and NB similarly predicted IUGR (accuracy: 95.3%), while SVM outperformed NB (accuracy: 95.8 vs. 94.7%) in predicting PE; (4) Conclusions: The integration of machine learning-based algorithms in the first-trimester screening of PE and IUGR could improve the overall detection rate of these disorders, but this hypothesis should be confirmed in larger cohorts of pregnant patients from various geographical areas.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Predictive Performance of PlGF (Placental Growth Factor) for Screening Preeclampsia in Asymptomatic Women: A Systematic Review and Meta-Analysis [J].
Agrawal, Swati ;
Shinar, Shin ;
Cerdeira, Ana Sofia ;
Redman, Christopher ;
Vatish, Manu .
HYPERTENSION, 2019, 74 (05) :1124-1135
[2]   Maternal serum placental protein 13 at 11-13 weeks of gestation in preeclampsia [J].
Akolekar, Ranjit ;
Syngelaki, Argyro ;
Beta, Jarek ;
Kocylowski, Rafal ;
Nicolaides, Kypros H. .
PRENATAL DIAGNOSIS, 2009, 29 (12) :1103-1108
[4]   Low-Dose Aspirin Use During Pregnancy [J].
Porter, T. Flint ;
Gyamfi-Bannerman, Cynthia ;
Manuck, Tracy .
OBSTETRICS AND GYNECOLOGY, 2018, 132 (01) :E44-E52
[5]  
Asiltas Burak, 2018, Pathophysiology, V25, P131, DOI 10.1016/j.pathophys.2018.02.006
[6]   Predictive value of sFlt-1, PlGF, sFlt-1/PlGF ratio and PAPP-A for late-onset preeclampsia and IUGR between 32 and 37 weeks of pregnancy [J].
Birdir, C. ;
Droste, L. ;
Fox, L. ;
Frank, M. ;
Fryze, J. ;
Enekwe, A. ;
Koeninger, A. ;
Kimmig, R. ;
Schmidt, B. ;
Gellhaus, A. .
PREGNANCY HYPERTENSION-AN INTERNATIONAL JOURNAL OF WOMENS CARDIOVASCULAR HEALTH, 2018, 12 :124-128
[7]   First trimester preeclampsia screening and prediction [J].
Chaemsaithong, Piya ;
Sahota, Daljit Singh ;
Poon, Liona C. .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 226 (02) :S1071-+
[8]   First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction [J].
Chafetz, Ilana ;
Kuhnreich, Ido ;
Sammar, Marei ;
Tal, Yossi ;
Gibor, Yair ;
Meiri, Hamutal ;
Cuckle, Howard ;
Wolf, Myles .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2007, 197 (01) :35.e1-35.e7
[9]  
Chang Kai-Jung, 2023, Int J Environ Res Public Health, V20, DOI 10.3390/ijerph20042994
[10]   Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis [J].
Conde-Agudelo, A. ;
Papageorghiou, A. T. ;
Kennedy, S. H. ;
Villar, J. .
BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2013, 120 (06) :681-694