Polyhedra without cubic vertices are prism-hamiltonian

被引:1
作者
Spacapan, Simon [1 ,2 ]
机构
[1] Univ Maribor, Fac Mech Engn FME, Dept Math, Smetanova 17, Maribor 2000, Slovenia
[2] IMFM, Ljubljana, Slovenia
关键词
circuit graph; Hamiltonian cycle;
D O I
10.1002/jgt.23078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The prism over a graph G $G$ is the Cartesian product of G $G$ with the complete graph on two vertices. A graph G $G$ is prism-hamiltonian if the prism over G $G$ is hamiltonian. We prove that every polyhedral graph (i.e., 3-connected planar graph) of minimum degree at least four is prism-hamiltonian.
引用
收藏
页码:380 / 406
页数:27
相关论文
共 24 条
  • [1] TREES IN POLYHEDRAL GRAPHS
    BARNETTE, D
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (04): : 731 - &
  • [2] Barnette D., 1970, J COMBINATORIAL THEO, V9, P54
  • [3] Prism-hamiltonicity of triangulations
    Biebighauser, Daniel R.
    Ellingham, M. N.
    [J]. JOURNAL OF GRAPH THEORY, 2008, 57 (03) : 181 - 197
  • [4] Brinkmann G, 2019, ELECTRON J COMB, V26
  • [5] Hamiltonian decompositions of prisms over cubic graphs
    Cada, R
    Kaiser, T
    Rosenfeld, M
    Ryjácek, Z
    [J]. DISCRETE MATHEMATICS, 2004, 286 (1-2) : 45 - 56
  • [6] Dirac G. A., 1952, P LOND MATH SOC, V3, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [7] Toughness and prism-hamiltonicity of P4-free graphs
    Ellingham, M. N.
    Nowbandegani, Pouria Salehi
    Shan, Songling
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 284 : 201 - 206
  • [8] Hamiltonicity of planar graphs with a forbidden minor
    Ellingham, M. N.
    Marshall, Emily A.
    Ozeki, Kenta
    Tsuchiya, Shoichi
    [J]. JOURNAL OF GRAPH THEORY, 2019, 90 (04) : 459 - 483
  • [9] 2-WALKS IN-CIRCUIT GRAPHS
    GAO, ZC
    RICHTER, RB
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (02) : 259 - 267
  • [10] On 3-polytopes with non-Hamiltonian prisms
    Ikegami, Daiki
    Maezawa, Shun-ichi
    Zamfirescu, Carol T.
    [J]. JOURNAL OF GRAPH THEORY, 2021, 97 (04) : 569 - 577