Systematic Review on Learning-Based Spectral CT

被引:1
作者
Bousse, Alexandre [1 ]
Kandarpa, Venkata Sai Sundar [1 ]
Rit, Simon [2 ]
Perelli, Alessandro [3 ]
Li, Mengzhou [4 ]
Wang, Guobao [5 ]
Zhou, Jian [6 ]
Wang, Ge [4 ]
机构
[1] Univ Bretagne Occidentale, LaTIM, Inserm, UMR 1101, F-29238 Brest, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, INSA Lyon, UJM St Etienne,CNRS,CREATIS,UMR 5220,U1294, F-69373 Lyon, France
[3] Univ Dundee, Sch Sci & Engn, Dept Biomed Engn, Dundee DD1 4HN, Scotland
[4] Rensselaer Polytech Inst, Biomed Imaging Ctr, Troy, NY 12180 USA
[5] Univ Calif Davis Hlth, Dept Radiol, Sacramento, CA 95817 USA
[6] Canon Med Res USA Inc, CTIQ, Vernon Hills, IL 60061 USA
关键词
Artificial intelligence (AI); deep learning; dual-energy CT (DECT); machine learning; photon-counting CT (PCCT); LOW-DOSE CT; DUAL-ENERGY CT; X-RAY CT; STATISTICAL IMAGE-RECONSTRUCTION; GENERATIVE ADVERSARIAL NETWORK; COMPUTED-TOMOGRAPHY; MULTIMATERIAL DECOMPOSITION; OVERCOMPLETE DICTIONARIES; ALGORITHM; PERFORMANCE;
D O I
10.1109/TRPMS.2023.3314131
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: 1) dual-energy CT (DECT) and 2) photon-counting CT (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
引用
收藏
页码:113 / 137
页数:25
相关论文
共 298 条
  • [1] Nonlinear material decomposition using a regularized iterative scheme based on the Bregman distance
    Abascal, J. F. P. J.
    Ducros, N.
    Peyrin, F.
    [J]. INVERSE PROBLEMS, 2018, 34 (12)
  • [2] Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach
    Abascal, Juan F. P. J.
    Ducros, Nicolas
    Pronina, Valeriya
    Rit, Simon
    Rodesch, Pierre-Antoine
    Broussaud, Thomas
    Bussod, Suzanne
    Douek, Philippe C.
    Hauptmann, Andreas
    Arridge, Simon
    Peyrin, Francoise
    [J]. IEEE ACCESS, 2021, 9 : 25632 - 25647
  • [3] Spectral CT of the abdomen: Where are we now?
    Adam, Sharon Z.
    Rabinowich, Aviad
    Kessner, Rivka
    Blachar, Arye
    [J]. INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [4] Learned Primal-Dual Reconstruction
    Adler, Jonas
    Oktem, Ozan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1322 - 1332
  • [5] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [6] ENERGY-SELECTIVE RECONSTRUCTIONS IN X-RAY COMPUTERIZED TOMOGRAPHY
    ALVAREZ, RE
    MACOVSKI, A
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 1976, 21 (05) : 733 - 744
  • [7] Dimensionality and noise in energy selective x-ray imaging
    Alvarez, Robert E.
    [J]. MEDICAL PHYSICS, 2013, 40 (11)
  • [8] [Anonymous], 2009, P 26 ANN INT C MACH, DOI DOI 10.1145/1553374.1553463
  • [9] Solving inverse problems using data-driven models
    Arridge, Simon
    Maass, Peter
    Oktem, Ozan
    Schonlieb, Carola-Bibiane
    [J]. ACTA NUMERICA, 2019, 28 : 1 - 174
  • [10] (An overview of) Synergistic reconstruction for multimodality/multichannel imaging methods
    Arridge, Simon R.
    Ehrhardt, Matthias J.
    Thielemans, Kris
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2200):