Low-Prandtl-number effects on global and local statistics in two-dimensional Rayleigh-Bénard convection

被引:28
作者
Zhang, Yang [1 ]
Zhou, Quan [2 ]
机构
[1] Hubei Univ Arts & Sci, Sch Mech Engn, Hubei Longzhong Lab, Xiangyang 441053, Peoples R China
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
RAYLEIGH-BENARD CONVECTION; TURBULENT CONVECTION; THERMAL-CONVECTION; TEMPERATURE;
D O I
10.1063/5.0175011
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present global and local statistical properties of turbulent Rayleigh-Benard (RB) convection at low Prandtl numbers in this work. A series of high resolution two-dimensional (2D) direct numerical simulations are carried out in a square box for the Prandtl number ranges 0.005 <= Pr <= 0.07 and 0.01 <= Pr <= 0.15 at Rayleigh numbers Ra = 10(7) and Ra = 10(8), respectively. The global heat and momentum transport expressed as Nusselt number Nu and Reynolds number Re are found to scale as Nu similar to Pr-0.14 and Re similar to Pr- 0.82 for Ra = 10(7), and Nu similar to Pr-0.11 Re similar to Pr- 0.93 for Ra = 10(8). The local velocity fluctuation at the cell center shows larger amplitudes at lowered Pr, indicating a stronger turbulence in the bulk. The magnitudes of kinetic and thermal energy dissipation rates in the bulk also increase with the decreasing of Pr, due to the intensified velocity gradient and larger thermal diffusivity, respectively. In the cell central region, probability density functions (PDFs) of velocity show a bimodal distribution, and it approaches the Gaussian distribution at higher Pr, while the PDFs of temperature display a stretched exponential shape with intermittent behavior. The kinetic energy spectra further reveal that the velocity cascade follows the Bolgiano-Obukhov scaling in the bulk of the convective flow.
引用
收藏
页数:14
相关论文
共 61 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]   Jump rope vortex flow in liquid metal Rayleigh-Benard convection in a cuboid container of aspect ratio Γ=5 [J].
Akashi, Megumi ;
Yanagisawa, Takatoshi ;
Sakuraba, Ataru ;
Schindler, Felix ;
Horn, Susanne ;
Vogt, Tobias ;
Eckert, Sven .
JOURNAL OF FLUID MECHANICS, 2021, 932
[3]   Transition from convection rolls to large-scale cellular structures in turbulent Rayleigh-Benard convection in a liquid metal layer [J].
Akashi, Megumi ;
Yanagisawa, Takatoshi ;
Tasaka, Yuji ;
Vogt, Tobias ;
Murai, Yuichi ;
Eckert, Sven .
PHYSICAL REVIEW FLUIDS, 2019, 4 (03)
[4]   Prandtl number dependence of the small-scale properties in turbulent Rayleigh-Benard convection [J].
Bhattacharya, Shashwat ;
Verma, Mahendra K. ;
Samtaney, Ravi .
PHYSICAL REVIEW FLUIDS, 2021, 6 (06)
[5]   Revisiting Reynolds and Nusselt numbers in turbulent thermal convection [J].
Bhattacharya, Shashwat ;
Verma, Mahendra K. ;
Samtaney, Ravi .
PHYSICS OF FLUIDS, 2021, 33 (01)
[6]   Effect of inertia in Rayleigh-Benard convection [J].
Breuer, M ;
Wessling, S ;
Schmalzl, J ;
Hansen, U .
PHYSICAL REVIEW E, 2004, 69 (02) :026302-1
[7]   Flow Reversals in Turbulent Convection via Vortex Reconnections [J].
Chandra, Mani ;
Verma, Mahendra K. .
PHYSICAL REVIEW LETTERS, 2013, 110 (11)
[8]   New perspectives in turbulent Rayleigh-Benard convection [J].
Chilla, F. ;
Schumacher, J. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07)
[9]   Effect of Prandtl number on heat transport enhancement in Rayleigh-Benard convection under geometrical confinement [J].
Chong, Kai Leong ;
Wagner, Sebastian ;
Kaczorowski, Matthias ;
Shishkina, Olga ;
Xia, Ke-Qing .
PHYSICAL REVIEW FLUIDS, 2018, 3 (01)
[10]   Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields [J].
Christensen, U. R. ;
Aubert, J. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 166 (01) :97-114