Explaining Black Boxes With a SMILE: Statistical Model-Agnostic Interpretability With Local Explanations

被引:0
|
作者
Aslansefat, Koorosh [1 ]
Hashemian, Mojgan [2 ]
Walker, Martin [1 ]
Akram, Mohammed Naveed [3 ]
Sorokos, Ioannis [3 ]
Papadopoulos, Yiannis [4 ]
机构
[1] Univ Hull, Comp Sci, Kingston Upon Hull HU6 7RX, England
[2] Direct Line Grp Ltd, Leeds LS1 4AZ, England
[3] Fraunhofer Inst Expt Software Engn, D-67663 Kaiserslautern, Germany
[4] Univ Hull, Dependable Intelligent Syst Res Grp, Kingston Upon Hull HU6 7RX, England
关键词
Closed Box; Perturbation Methods; Predictive Models; Gaussian Distribution; Data Models; Machine Learning; Training; Object Object; Use Of Measures; Statistical Measures; Wide Range Of Domains; Growth In Recent Years; Statistical Distance; Variety Of Supports; Linear Model Object Object; Alternative Models Object Object; Model Coefficients; Maximum Distance; Intersection Over Union Object Object Object Object Object Object; Kernel Function; Input Samples; Light Signal Object Object; Part Of The Image; Adversarial Attacks; Random Perturbations; Perturbation Vector; Human Intuition; Game Theory Object Object; Understanding Of Models;
D O I
10.1109/MS.2023.3321282
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Explainability is a key aspect of improving trustworthiness. We therefore propose SMILE, a new method that builds on previous approaches by making use of statistical distance measures to improve explainability while remaining applicable to a wide range of input data domains.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [41] Generating structural alerts from toxicology datasets using the local interpretable model-agnostic explanations method
    Nascimento, Cayque Monteiro Castro
    Moura, Paloma Guimaraes
    Pimentel, Andre Silva
    DIGITAL DISCOVERY, 2023, 2 (05): : 1311 - 1325
  • [42] Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
    Singh, Devesh
    JOURNAL OF ECONOMICS FINANCE AND ADMINISTRATIVE SCIENCE, 2024, 29 (57): : 98 - 120
  • [43] Model-agnostic vs. Model-intrinsic Interpretability for Explainable Product Search
    Ai, Qingyao
    Narayanan, Lakshmi R.
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 5 - 15
  • [44] MANE: Model-Agnostic Non-linear Explanations for Deep Learning Model
    Tian, Yue
    Liu, Guanjun
    2020 IEEE WORLD CONGRESS ON SERVICES (SERVICES), 2020, : 33 - 36
  • [45] ILIME: Local and Global Interpretable Model-Agnostic Explainer of Black-Box Decision
    ElShawi, Radwa
    Sherif, Youssef
    Al-Mallah, Mouaz
    Sakr, Sherif
    ADVANCES IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2019, 2019, 11695 : 53 - 68
  • [46] Evaluating MASHAP as a faster alternative to LIME for model-agnostic machine learning interpretability
    Messalas, Andreas
    Aridas, Christos
    Kanellopoulos, Yannis
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5777 - 5779
  • [47] A comparative study of methods for estimating model-agnostic Shapley value explanations
    Olsen, Lars Henry Berge
    Glad, Ingrid Kristine
    Jullum, Martin
    Aas, Kjersti
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (04) : 1782 - 1829
  • [48] ELIME: Exact Local Interpretable Model-Agnostic Explanation
    Qian, Junyan
    Du, Xiaofu
    Pan, Ruishi
    Ling, Ming
    Ding, Hao
    EUROPEAN JOURNAL ON ARTIFICIAL INTELLIGENCE, 2025,
  • [49] MAIRE - A Model-Agnostic Interpretable Rule Extraction Procedure for Explaining Classifiers
    Sharma, Rajat
    Reddy, Nikhil
    Kamakshi, Vidhya
    Krishnan, Narayanan C.
    Jain, Shweta
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION (CD-MAKE 2021), 2021, 12844 : 329 - 349
  • [50] McXai: Local Model-Agnostic Explanation As Two Games
    Huang, Yiran
    Schaal, Nicole
    Hefenbrock, Michael
    Zhou, Yexu
    Riedel, Till
    Beigl, Michael
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,