Generalized cross-helicity in non-ideal magnetohydrodynamics

被引:2
|
作者
Sharma, Prachi [1 ]
Yahalom, Asher [1 ]
机构
[1] Ariel Univ, Kiryat Hamada POB 3, IL-40700 Ariel, Israel
关键词
plasma flows; MAGNETIC HELICITY; CONSERVATION; TURBULENCE; TRANSPORT;
D O I
10.1017/S002237782300123X
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The objective of the present paper is to investigate the constancy of the topological invariant, denoted the non-barotropic generalized cross-helicity in the case of non-ideal magnetohydrodynamics (MHD). Existing work considers only ideal barotropic MHD and ideal non-barotropic MHD. Here, we consider dissipative processes in the form of thermal conduction, finite electrical conductivity and viscosity and the effect of these processes on the cross-helicity conservation. An analytical approach has been adopted to obtain the mathematical expressions for the time derivative of the cross-helicity. Obtained results show that the generalized cross-helicity is not conserved in the non-ideal MHD limit and indicate which processes affect the helicity and which do not. Furthermore, we indicate the configurations in which this topological constant is conserved despite the dissipative processes. Some examples and applications are also given.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Building a Numerical Relativistic Non-ideal Magnetohydrodynamics Code for Astrophysical Applications
    Miranda Aranguren, S.
    Aloy, M. A.
    Aloy-Toras, Carmen
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2013, 2014, 488 : 249 - 254
  • [22] CROSS-HELICITY EFFECTS IN ANISOTROPIC MHD TURBULENCE
    VELTRI, P
    MANGENEY, A
    DOBROWOLNY, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1982, 68 (02): : 235 - 251
  • [23] Building a numerical relativistic non-ideal magnetohydrodynamics code for astrophysical applications
    Aranguren, S. Miranda
    Aloy, M. A.
    Aloy, Carmen.
    MAGNETIC FIELDS THROUGHOUT STELLAR EVOLUTION, 2014, (302): : 64 - 65
  • [24] Non-ideal magnetohydrodynamics on a moving mesh I: ohmic and ambipolar diffusion
    Zier, Oliver
    Springel, Volker
    Mayer, Alexander C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (01) : 1563 - 1579
  • [25] Non-ideal memristors for a non-ideal world
    Gale, Ella
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2015, 212 (02): : 229 - 238
  • [26] Towards a 'Non-Ideal' Non-Ideal Theory
    Carey, Brian
    JOURNAL OF APPLIED PHILOSOPHY, 2015, 32 (02) : 147 - 162
  • [27] THE SMALL-SCALE DYNAMO AND NON-IDEAL MAGNETOHYDRODYNAMICS IN PRIMORDIAL STAR FORMATION
    Schober, Jennifer
    Schleicher, Dominik
    Federrath, Christoph
    Glover, Simon
    Klessen, Ralf S.
    Banerjee, Robi
    ASTROPHYSICAL JOURNAL, 2012, 754 (02):
  • [28] Yoshizawa's cross-helicity effect and its quenching
    Brandenburg, A.
    Raedler, K-H.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2013, 107 (1-2): : 207 - 217
  • [29] The cross-helicity effect on cascade processes in MHD turbulence
    Mizeva, I. A.
    Stepanov, R. A.
    Frik, P. G.
    DOKLADY PHYSICS, 2009, 54 (02) : 93 - 97
  • [30] The cross-helicity effect on cascade processes in MHD turbulence
    I. A. Mizeva
    R. A. Stepanov
    P. G. Frik
    Doklady Physics, 2009, 54 : 93 - 97