Generalized cross-helicity in non-ideal magnetohydrodynamics

被引:2
|
作者
Sharma, Prachi [1 ]
Yahalom, Asher [1 ]
机构
[1] Ariel Univ, Kiryat Hamada POB 3, IL-40700 Ariel, Israel
关键词
plasma flows; MAGNETIC HELICITY; CONSERVATION; TURBULENCE; TRANSPORT;
D O I
10.1017/S002237782300123X
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The objective of the present paper is to investigate the constancy of the topological invariant, denoted the non-barotropic generalized cross-helicity in the case of non-ideal magnetohydrodynamics (MHD). Existing work considers only ideal barotropic MHD and ideal non-barotropic MHD. Here, we consider dissipative processes in the form of thermal conduction, finite electrical conductivity and viscosity and the effect of these processes on the cross-helicity conservation. An analytical approach has been adopted to obtain the mathematical expressions for the time derivative of the cross-helicity. Obtained results show that the generalized cross-helicity is not conserved in the non-ideal MHD limit and indicate which processes affect the helicity and which do not. Furthermore, we indicate the configurations in which this topological constant is conserved despite the dissipative processes. Some examples and applications are also given.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Generalized χ and η Cross-Helicities in Non-Ideal Magnetohydrodynamics
    Sharma, Prachi
    Yahalom, Asher
    SYMMETRY-BASEL, 2023, 15 (12):
  • [2] The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity
    Briard, Antoine
    Gomez, Thomas
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (01)
  • [3] OSCILLATION REGIMES IN IDEAL AND NON-IDEAL MAGNETOHYDRODYNAMICS
    LIFSHITS, AE
    FEDOROV, EN
    ZHURNAL TEKHNICHESKOI FIZIKI, 1985, 55 (04): : 770 - 772
  • [5] Non-ideal magnetohydrodynamics on a moving mesh
    Marinacci, Federico
    Vogelsberger, Mark
    Kannan, Rahul
    Mocz, Philip
    Pakmor, Ruediger
    Springel, Volker
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (02) : 2476 - 2492
  • [6] Non-ideal magnetohydrodynamics on a moving mesh
    Marinacci F.
    Vogelsberger M.
    Kannan R.
    Mocz P.
    Pakmor R.
    Springel V.
    Marinacci, Federico (fmarinac@mit.edu), 2018, Oxford University Press (476) : 2476 - 2492
  • [7] A note on energy and cross-helicity conservation in the ideal magnetohydrodynamic equations
    Ye, Yulin
    Li, Zilai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (16) : 12871 - 12882
  • [8] The physics of non-ideal general relativistic magnetohydrodynamics
    Andersson, N.
    Hawke, I
    Celora, T.
    Comer, G. L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (03) : 3737 - 3750
  • [9] Two special solutions of the non-ideal magnetohydrodynamics
    Feng, XS
    Liu, Y
    Wei, FS
    Ye, ZY
    CHINESE PHYSICS LETTERS, 2000, 17 (05) : 382 - 384
  • [10] Non-ideal magnetohydrodynamics of self-gravitating filaments
    Gutierrez-Vera, Nicol
    Grassi, Tommaso
    Bovino, Stefano
    Lupi, Alessandro
    Galli, Daniele
    Schleicher, Dominik R. G.
    ASTRONOMY & ASTROPHYSICS, 2023, 670