Utilizing primary human airway mucociliary tissue cultures to model ramifications of chronic E-cigarette usage

被引:2
|
作者
Manna, Vincent J.
Dwyer, Shannon
Pizutelli, Vanessa
Caradonna, Salvatore J.
机构
[1] Rowan Univ, Grad Sch Biomed Sci, Dept Mol Biol, Stratford, NJ USA
[2] Rowan Univ, Sch Osteopath Med, Stratford, NJ USA
关键词
E-cigarettes; Air-liquid interface; Vaping; Inflammation; Cytokines; UNITED-STATES; PRODUCT;
D O I
10.1016/j.tiv.2023.105725
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Electronic cigarettes are battery powered devices that use a vape-liquid to produce a vapor that is inhaled. A consequence of the rise in e-cigarette usage was the 2019 emergence of a vaping-induced respiratory disease denoted as 'e-cigarette or vaping use-associated lung injury' (EVALI). One of the suspected causes of EVALI is Vitamin E Acetate (VEA), which was found to be a diluent in certain illicit vape-pens, whereas nicotine is commonly diluted in equal parts propylene glycol and vegetable glycerin (PG:VG). The prevalent use of e -cigarettes and the emergence of a novel illness has made understanding how e-cigarette vapors affect our respiratory tissues a public health concern. We have designed and produced a simple device that can operate e -cigarettes and deliver the vapor to a chamber containing a standard cell culture multi-well plate. Here we utilize our device to model the response of human airway mucociliary tissue after chronic exposure to vapors produced from either PG:VG or VEA. We note several differences between how PG:VG and VEA vapors interact with and alter airway tissue cultures and suggest potential mechanisms for how VEA-vapors can exacerbate EVALI symptoms. Our device combined with primary human airway tissue cultures make an economical and compact model system that allows for animal-free investigations into the acute and chronic consequences of e-cigarette vapors on primary respiratory cells.
引用
收藏
页数:8
相关论文
empty
未找到相关数据