Analysis of temperature effect in the CO2 absorption using a deep eutectic solvent: An in silico approach

被引:5
|
作者
Bezerra, Lucas Lima [1 ]
Correia, Adriana Nunes [1 ]
de Lima-Neto, Pedro [1 ]
Monteiro, Norberto de Kassio Vieira [1 ]
机构
[1] Univ Fed Ceara, Ctr Ciencias, Dept Quim Analit & Fis Quim, Campus Pici,Bloco 940, BR-60440900 Fortaleza, Ceara, Brazil
关键词
Global warming; Carbon dioxide; Absorption; Deep eutectic solvents; In silico approach; MOLECULAR-DYNAMICS SIMULATIONS; CARBON-DIOXIDE; OPTIMIZATION; ALGORITHM; CRYSTALS; CHLORIDE;
D O I
10.1016/j.jmgm.2023.108649
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The excess level of carbon dioxide in the atmosphere has contributed a lot to global warming, occasioning several damages to the planet. Therefore, it is urgent to find ways to capture this gas. Then, the present work analyzed the temperature effect in CO2 absorption through deep eutectic solvents (DESs) based on urea and choline chloride using an in silico approach. The Molecular Dynamics (MD) simulations indicated that the increased temperature reduced the interaction potential of carbon dioxide molecules with the DESs components, indicating that the absorption process is more favorable at 303 K. On the other hand, the Noncovalent Interactions (NCI) simulations suggest that the increased temperature reduced the strong attractions and increased repulsive interactions between the carbon dioxide molecules with the solvent analyzed. Therefore, both in silico approaches suggest that the carbon dioxide absorption is more indicated at 303 K.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Efficient Absorption of CO2 by Protic-Ionic-Liquid Based Deep Eutectic Solvents
    Wen, Shuyue
    Zhang, Xiaomin
    Wu, Youting
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (11)
  • [42] Implementation of the Deep Eutectic Solvent, Choline Urea Chloride (1:2), to Evaluate the Sustainability of its Application During CO2 Capture
    Romero-Garcia, Ana Gabriela
    Ramirez-Marquez, Cesar
    Sanchez-Ramirez, Eduardo
    Ponce-Ortega, Jose Maria
    Gonzalez-Campos, J. Betzabe
    De Blasio, Cataldo
    Segovia-Hernandez, Juan Gabriel
    PROCESS INTEGRATION AND OPTIMIZATION FOR SUSTAINABILITY, 2024, 8 (03) : 741 - 758
  • [43] The Influence of Hydrogen Bond Donors on the CO2 Absorption Mechanism by the Bio-Phenol-Based Deep Eutectic Solvents
    Wang, Ze
    Wang, Zonghua
    Chen, Jie
    Wu, Congyi
    Yang, Dezhong
    MOLECULES, 2021, 26 (23):
  • [44] Analysis of CO selectivity during electroreduction of CO2 in deep eutectic solvents by machine learning
    Guenay, M. Erdem
    Tapan, N. Alper
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2024, 54 (07) : 1541 - 1556
  • [45] Density, Viscosity, and CO2 Solubility of a Deep Eutectic Solvent Comprising Choline Chloride and Ethylene Glycol
    Ainai, Yuto
    Taniguchi, Ayaka
    Yokoyama, Chiaki
    Kodama, Daisuke
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2023, 68 (09) : 2283 - 2295
  • [46] Physical absorption and thermodynamic modeling of CO2 in new deep eutectic solvents
    Fan, Jing
    Zhang, Xin
    He, Nan
    Song, Fenhong
    Zhang, Xiwu
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 402
  • [47] The effect of SO2 on CO2 absorption in an aqueous potassium carbonate solvent
    Wappel, David
    Khan, Ash
    Shallcross, David
    Joswig, Sebastian
    Kentish, Sandra
    Stevens, Geoff
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 125 - 131
  • [48] Modeling of CO2 absorption in a membrane contactor considering solvent evaporation
    Ghasem, Nayef
    Al-Marzouqi, Mohamed
    Rahim, Nihmiya Abdul
    SEPARATION AND PURIFICATION TECHNOLOGY, 2013, 110 : 1 - 10
  • [49] A Greener Approach to Oxazolidinone Synthesis Using a Ternary Deep Eutectic Solvent
    Ahmadi, Faezeh
    Nejad, Masoumeh Jadidi
    Shariatipour, Monire
    Heydari, Akbar
    CHEMISTRYSELECT, 2022, 7 (17):
  • [50] DEEP EUTECTIC SOLVENTS FOR CO2 CAPTURE IN POST-COMBUSTION PROCESSES
    Mihaila, Eliza Gabriela
    Aruxandei, Diana Constantinescu
    Doncea, Sanda Maria
    Oancea, Florin
    Dinca, Cristian
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2021, 66 (02): : 233 - 246