A multi-scale global attention network for blood vessel segmentation from fundus images

被引:15
作者
Gao, Ge [1 ,2 ]
Li, Jianyong [3 ]
Yang, Lei [1 ,2 ]
Liu, Yanhong [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Robot Percept & Control Engn Lab, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Comp & Commun Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinal vessels segmentation; Deep learning; U-Net network; Global context attention; RETINAL IMAGES; NET;
D O I
10.1016/j.measurement.2023.113553
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate segmentation of retinal fundus vessel images is vital to clinical diagnosis. Due to the intricate vascular morphology, high noise and low contrast of fundus vessel images, retinal fundus vessel segmentation is still a challenging task, especially for thin vessel segmentation. In recent years, on account of strong context feature extraction ability of deep learning, it has shown a remarkable performance in the automatic segmentation of retinal fundus vessels. However, it still exhibits certain limitations, such as information loss on micro objects or details, inadequate treatment of local features, etc. Faced with these challenging factors, we present a new multi-scale global attention network (MGA-Net). To realize effective feature representation, a dense attention U-Net network is proposed. Meanwhile, we design a global context attention (GCA) block to realize multi-scale feature fusion, allowing the global features from the deep network layers to flow to the shallow network layers. Further, aimed at retinal fundus vessel segmentation task again the class imbalance issue, the AG block is also introduced. Related experiments are conducted on CHASE_DB1, DRIVE and STARE datasets to show the effectiveness of proposed segmentation model. The experimental results demonstrate the robustness of the proposed method with Ft exceeding 82% on all three datasets and effectively improve the segmentation performance of thin vessels. The source code of proposed MGA-Net is available at https://github.com/gegao310/workspace.git.
引用
收藏
页数:13
相关论文
共 45 条
[1]  
Alom MZ, 2018, PROC NAECON IEEE NAT, P228, DOI 10.1109/NAECON.2018.8556686
[2]  
Alvarado-Carrillo Dora E., 2021, Geometry and Vision: First International Symposium, ISGV 2021. Communications in Computer and Information Science (1386), P378, DOI 10.1007/978-3-030-72073-5_29
[3]   Width Attention based Convolutional Neural Network for Retinal Vessel Segmentation [J].
Alvarado-Carrillo, Dora E. ;
Dalmau-Cedeno, Oscar S. .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 209
[4]   A modular supervised algorithm for vessel segmentation in red-free retinal images [J].
Anzalone, Andrea ;
Bizzarri, Federico ;
Parodi, Mauro ;
Storace, Marco .
COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (08) :913-922
[5]   DETECTION OF BLOOD-VESSELS IN RETINAL IMAGES USING TWO-DIMENSIONAL MATCHED-FILTERS [J].
CHAUDHURI, S ;
CHATTERJEE, S ;
KATZ, N ;
NELSON, M ;
GOLDBAUM, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1989, 8 (03) :263-269
[6]   Retinal Vessel Segmentation Using Deep Learning: A Review [J].
Chen, Chunhui ;
Chuah, Joon Huang ;
Ali, Raza ;
Wang, Yizhou .
IEEE ACCESS, 2021, 9 :111985-112004
[7]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[8]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[9]  
Ghiasi G, 2018, ADV NEUR IN, V31
[10]   CE-Net: Context Encoder Network for 2D Medical Image Segmentation [J].
Gu, Zaiwang ;
Cheng, Jun ;
Fu, Huazhu ;
Zhou, Kang ;
Hao, Huaying ;
Zhao, Yitian ;
Zhang, Tianyang ;
Gao, Shenghua ;
Liu, Jiang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) :2281-2292