A multi-scale global attention network for blood vessel segmentation from fundus images

被引:12
作者
Gao, Ge [1 ,2 ]
Li, Jianyong [3 ]
Yang, Lei [1 ,2 ]
Liu, Yanhong [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Robot Percept & Control Engn Lab, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Comp & Commun Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinal vessels segmentation; Deep learning; U-Net network; Global context attention; RETINAL IMAGES; NET;
D O I
10.1016/j.measurement.2023.113553
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate segmentation of retinal fundus vessel images is vital to clinical diagnosis. Due to the intricate vascular morphology, high noise and low contrast of fundus vessel images, retinal fundus vessel segmentation is still a challenging task, especially for thin vessel segmentation. In recent years, on account of strong context feature extraction ability of deep learning, it has shown a remarkable performance in the automatic segmentation of retinal fundus vessels. However, it still exhibits certain limitations, such as information loss on micro objects or details, inadequate treatment of local features, etc. Faced with these challenging factors, we present a new multi-scale global attention network (MGA-Net). To realize effective feature representation, a dense attention U-Net network is proposed. Meanwhile, we design a global context attention (GCA) block to realize multi-scale feature fusion, allowing the global features from the deep network layers to flow to the shallow network layers. Further, aimed at retinal fundus vessel segmentation task again the class imbalance issue, the AG block is also introduced. Related experiments are conducted on CHASE_DB1, DRIVE and STARE datasets to show the effectiveness of proposed segmentation model. The experimental results demonstrate the robustness of the proposed method with Ft exceeding 82% on all three datasets and effectively improve the segmentation performance of thin vessels. The source code of proposed MGA-Net is available at https://github.com/gegao310/workspace.git.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi scale multi attention network for blood vessel segmentation in fundus images
    Kande, Giri Babu
    Nalluri, Madhusudana Rao
    Manikandan, R.
    Cho, Jaehyuk
    Veerappampalayam Easwaramoorthy, Sathishkumar
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [2] Vessel Segmentation in Fundus Images with Multi-Scale Feature Extraction and Disentangled Representation
    Zhong, Yuanhong
    Chen, Ting
    Zhong, Daidi
    Liu, Xiaoming
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [3] IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images
    Liu, Mingtao
    Wang, Yunyu
    Wang, Lei
    Hu, Shunbo
    Wang, Xing
    Ge, Qingman
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [4] A multi-scale segmentation-to-classification network for tiny microaneurysm detection in fundus images
    Xia, Haiying
    Lan, Yang
    Song, Shuxiang
    Li, Haisheng
    KNOWLEDGE-BASED SYSTEMS, 2021, 226
  • [5] Learning multi-scale deep fusion for retinal blood vessel extraction in fundus images
    Kamini Upadhyay
    Monika Agrawal
    Praveen Vashist
    The Visual Computer, 2023, 39 : 4445 - 4457
  • [6] Learning multi-scale deep fusion for retinal blood vessel extraction in fundus images
    Upadhyay, Kamini
    Agrawal, Monika
    Vashist, Praveen
    VISUAL COMPUTER, 2023, 39 (10) : 4445 - 4457
  • [7] Vessel Segmentation in Angiography Images with Multi-Scale Filters
    Tenekeci, Mehmet Emin
    Pehlivan, Huseyin
    Gumuscu, Abdulkadir
    Karadag, Kerim
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [8] Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation
    Li, Peipei
    Qiu, Zhao
    Zhan, Yuefu
    Chen, Huajing
    Yuan, Sheng
    JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
  • [9] ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images
    Liu, Yanhong
    Shen, Ji
    Yang, Lei
    Bian, Guibin
    Yu, Hongnian
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [10] Blood Vessel Segmentation in Eye Fundus Images
    Savu, Madalina
    Popescu, Dan
    Ichim, Loretta
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON SMART SYSTEMS AND TECHNOLOGIES (SST), 2017, : 245 - 249