Graded diagnosis of Helicobacter pylori infection using hyperspectral images of gastric juice

被引:6
作者
Tian, Chongxuan [1 ]
Hao, Di [1 ]
Ma, Mingjun [2 ]
Zhuang, Ji [1 ]
Mu, Yijun [2 ]
Zhang, Zhanhao [1 ]
Zhao, Xin [1 ]
Lu, Yushan [1 ]
Zuo, Xiuli [2 ]
Li, Wei [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan, Shandong, Peoples R China
[2] Shandong Univ, Dept Gastroenterol, Qilu Hosp, Jinan, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
gastric juice; Helicobacter pylori; hyperspectral imaging technology; ResNet;
D O I
10.1002/jbio.202300254
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Helicobacter pylori is a potential underlying cause of many diseases. Although the Carbon 13 breath test is considered the gold standard for detection, it is high cost and low public accessibility in certain areas limit its widespread use. In this study, we sought to use machine learning and deep learning algorithm models to classify and diagnose H. pylori infection status. We used hyperspectral imaging system to gather gastric juice images and then retrieved spectral feature information between 400 and 1000 nm. Two different data processing methods were employed, resulting in the establishment of one-dimensional (1D) and two-dimensional (2D) datasets. In the binary classification task, the random forest model achieved a prediction accuracy of 83.27% when learning features from 1D data, with a specificity of 84.56% and a sensitivity of 92.31%. In the ternary classification task, the ResNet model learned from 2D data and achieved a classification accuracy of 91.48%.
引用
收藏
页数:12
相关论文
共 20 条
[1]   Molecular Mechanism ofHelicobacter pylori-Induced Gastric Cancer [J].
Alipour, Majid .
JOURNAL OF GASTROINTESTINAL CANCER, 2021, 52 (01) :23-30
[2]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Novel Anthocyanin-Based Colorimetric Assay for the Rapid, Sensitive, and Quantitative Detection of Helicobacter pylori [J].
Celik, Cagla ;
Sezgin, Gulten Can ;
Kocabas, Umut Gorkem ;
Gursoy, Sebnem ;
Ildiz, Nilay ;
Tan, Weihong ;
Ocsoy, Ismail .
ANALYTICAL CHEMISTRY, 2021, 93 (15) :6246-6253
[5]   What Is New in Helicobacter pylori Diagnosis. An Overview [J].
Dore, Maria Pina ;
Pes, Giovanni Mario .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (10)
[6]  
He Kaiming, 2016, P EUR C COMP VIS ECC, DOI DOI 10.1007/978-3-319-46493-038
[7]   Helicobacter pylori Antibiotic Resistance in the United States Between 2011 and 2021: A Systematic Review and Meta-Analysis [J].
Ho, Jonathan J. C. ;
Navarro, Matthew ;
Sawyer, Kelsey ;
Elfanagely, Yousef ;
Moss, Steven F. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2022, 117 (08) :1221-1230
[8]   Comparison of the Diagnostic Accuracy of Five Different Stool Antigen Tests for the Diagnosis of Helicobacter pylori Infection [J].
Korkmaz, Huseyin ;
Kesli, Recep ;
Karabagli, Pinar ;
Terzi, Yuksel .
HELICOBACTER, 2013, 18 (05) :384-391
[9]  
Li Y., 2018, IEEE 15 INT S BIOM I, DOI [10.1109/ISBI.2018.8363550, DOI 10.1109/ISBI.2018.8363550]
[10]   Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report [J].
Malfertheiner, P. ;
Megraud, F. ;
O'Morain, C. A. ;
Gisbert, J. P. ;
Kuipers, E. J. ;
Axon, A. T. ;
Bazzoli, F. ;
Gasbarrini, A. ;
Atherton, J. ;
Graham, D. Y. ;
Hunt, R. ;
Moayyedi, P. ;
Rokkas, T. ;
Rugge, M. ;
Selgrad, M. ;
Suerbaum, S. ;
Sugano, K. ;
El-Omar, E. M. .
GUT, 2017, 66 (01) :6-30