Generalized extended Mittag-Leffler function and its properties pertaining to integral transforms and fractional calculus

被引:3
作者
Padma, A. [1 ]
Rao, M. Ganeshwara [1 ]
Shimelis, Biniyam [2 ,3 ]
机构
[1] Chaitanya Bharathi Inst Technol, Dept Math, Hyderabad, Telangana, India
[2] Wollo Univ, Dept Math, Dessie, Ethiopia
[3] Wollo Univ, Coll Nat Sci, Dept Math, PO Box 1145, Dessie, Ethiopia
来源
RESEARCH IN MATHEMATICS | 2023年 / 10卷 / 01期
关键词
primary; 26A33; 33C05; 33C20; secondary; 33C65; 33C90; OPERATORS;
D O I
10.1080/27684830.2023.2220205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We aim to introduce extended generalized Mittag-Leffler function (EGMLF) via the extended Beta function and obtain certain integral and differential representation of them. Further, we present some formulas of the Riemann--Liouville fractional integration and differentiation operators. Also, we derive various integral transforms, including Euler transform, Laplace transform, Whittakar transform and K-transform. The operator and transform images are expressed in terms of the Wright generalized hypergoemetrichypergeometric type function. Interesting special cases of the main results are also considered.
引用
收藏
页数:12
相关论文
共 38 条
[31]   A Study on Generalized Multivariable Mittag-Leffler Function via Generalized Fractional Calculus Operators [J].
Suthar, D. L. ;
Andualem, Mitku ;
Debalkie, Belete .
JOURNAL OF MATHEMATICS, 2019, 2019
[32]   Certain integrals involving multivariate Mittag-Leffler function [J].
Suthar, D. L. ;
Amsalu, Hafte ;
Godifey, Kahsay .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[33]  
Suthar DL, 2017, APPL APPL MATH, V12, P1002
[34]  
Suthar D. L., 2020, Mathematics in Engineering, Science and Aerospace, V11, P309
[35]  
Suthar DL, 2014, J SCI ARTS, P117
[36]  
Whittaker E.T., 1962, A course of modern analysis, Vfourth
[37]   On fundamentals in the theory of function Eα(x) [J].
Wiman, A .
ACTA MATHEMATICA, 1905, 29 (02) :191-201
[38]   S-asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag-Leffler function kernels [J].
Zhang, Tianwei ;
Li, Yongkun .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 :331-347