Choosing the best value of shape parameter in radial basis functions by Leave-P-Out Cross Validation

被引:2
|
作者
Yaghouti, Mohammad Reza [1 ]
Farshadmoghadam, Farnaz [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2023年 / 11卷 / 01期
关键词
Radial basis functions; Shape parameter; Leave-One-Out cross validation; Leave-Two-Out cross validation; Approximate moving least squares; LEAST-SQUARES APPROXIMATION; SCATTERED DATA; INTERPOLATION;
D O I
10.22034/CMDE.2022.46208.1939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The radial basis functions (RBFs) meshless method has high accuracy for the interpolation of scattered data in high dimensions. Most of the RBFs depend on a parameter, called shape parameter which plays a significant role to specify the accuracy of the RBF method. In this paper, we present three algorithms to choose the optimal value of the shape parameter. These are based on Rippa's theory to remove data points from the data set and results obtained by Fasshauer and Zhang for the iterative approximate moving least square (AMLS) method. Numerical experiments confirm stable solutions with high accuracy compared to other methods.
引用
收藏
页码:108 / 129
页数:22
相关论文
共 15 条
  • [1] Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions
    Azarboni, Habibe Ramezannezhad
    Keyanpour, Mohammad
    Yaghouti, Mohammadreza
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 100 : 204 - 210
  • [2] An algorithm for choosing a good shape parameter for radial basis functions method with a case study in image processing
    Ghalichi, Shabnam Sadat Seyed
    Amirfakhrian, Majid
    Allahviranloo, Tofigh
    RESULTS IN APPLIED MATHEMATICS, 2022, 16
  • [3] On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere
    Fornberg, Bengt
    Piret, Cecile
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (05) : 2758 - 2780
  • [4] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    Cavoretto, R.
    De Rossi, A.
    Mukhametzhanov, M. S.
    Sergeyev, Ya. D.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (02) : 305 - 327
  • [5] An Experimental Study of Univariate Global Optimization Algorithms for Finding the Shape Parameter in Radial Basis Functions
    Mukhametzhanov, Marat S.
    Cavoretto, Roberto
    De Rossi, Alessandra
    OPTIMIZATION AND APPLICATIONS, OPTIMA 2019, 2020, 1145 : 326 - 339
  • [6] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    R. Cavoretto
    A. De Rossi
    M. S. Mukhametzhanov
    Ya. D. Sergeyev
    Journal of Global Optimization, 2021, 79 : 305 - 327
  • [7] Searching for an optimal shape parameter for solving a partial differential equation with the radial basis functions method
    Urleb, Marko
    Vrankar, Leopold
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 92 : 225 - 230
  • [8] Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
    Hao Cheng
    Dorian J.Garrick
    Rohan L.Fernando
    Journal of Animal Science and Biotechnology, 2017, 8 (03) : 733 - 737
  • [9] Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
    Cheng, Hao
    Garrick, Dorian J.
    Fernando, Rohan L.
    JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 2017, 8
  • [10] Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
    Hao Cheng
    Dorian J. Garrick
    Rohan L. Fernando
    Journal of Animal Science and Biotechnology, 8