Anosov groups: local mixing, counting and equidistribution

被引:12
作者
Edwards, Samuel [1 ,2 ]
Lee, Minju [1 ,3 ]
Oh, Hee [1 ,4 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
[2] Univ Durham, Dept Math, Durham, England
[3] Univ Chicago, Dept Math, Chicago, IL USA
[4] Korea Inst Adv Study Seoul, Seoul, South Korea
关键词
ASYMPTOTIC PROPERTIES; MATRIX COEFFICIENTS; SYMMETRIC-SPACES; INTEGRAL POINTS; SUBGROUPS; ORBITS; REPRESENTATIONS; FLOWS;
D O I
10.2140/gt.2023.27.513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected semisimple real algebraic group, and F < G a Zariski dense Anosov subgroup with respect to a minimal parabolic subgroup. We describe the asymptotic behavior of matrix coefficients ((exptv):f1, f2) in L2(F\G) as t-* oo for any f1, f2 E Cc(F\G) and any vector v in the interior of the limit cone of F. These asymptotics involve higher-rank analogues of Burger-Roblin measures, which are introduced in this paper. As an application, for any affine symmetric subgroup H of G, we obtain a bisector counting result for F-orbits with respect to the corresponding generalized Cartan decomposition of G. Moreover, we obtain analogues of the results of Duke, Rudnick and Sarnak as well as Eskin and McMullen for counting discrete F-orbits in affine symmetric spaces H\G.
引用
收藏
页码:513 / 573
页数:62
相关论文
共 51 条
[41]  
Quint Qui03 J.-F., 2003, TRAV MATH, V14, P143
[42]  
Roblin T., 2003, Mem. Soc. Math. Fr. (N. S.), V95
[43]   Hyperconvex representations and exponential growth [J].
Sambarino, A. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 :986-1010
[44]   THE ORBITAL COUNTING PROBLEM FOR HYPERCONVEX REPRESENTATIONS [J].
Sambarino, Andres .
ANNALES DE L INSTITUT FOURIER, 2015, 65 (04) :1755-1797
[45]   Quantitative properties of convex representations [J].
Sambarino, Andres .
COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (02) :443-488
[46]  
Schlichtkrull H., 1984, Progress in Mathematics, V49
[47]  
Sullivan D., 1979, Inst. Hautes tudes Sci. Publ. Math, P171
[48]   Mixing properties of Weyl Chamber flows of Ping-Pong groups [J].
Thirion, Xavier .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (03) :387-421
[49]   FREE SUBGROUPS IN LINEAR GROUPS [J].
TITS, J .
JOURNAL OF ALGEBRA, 1972, 20 (02) :250-&
[50]  
Wienhard Anna., 2018, Proceedings of the International Congress of Mathematicians (ICM) Rio de Janeiro, Vol, V2, P1031