Anosov groups: local mixing, counting and equidistribution

被引:12
作者
Edwards, Samuel [1 ,2 ]
Lee, Minju [1 ,3 ]
Oh, Hee [1 ,4 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
[2] Univ Durham, Dept Math, Durham, England
[3] Univ Chicago, Dept Math, Chicago, IL USA
[4] Korea Inst Adv Study Seoul, Seoul, South Korea
关键词
ASYMPTOTIC PROPERTIES; MATRIX COEFFICIENTS; SYMMETRIC-SPACES; INTEGRAL POINTS; SUBGROUPS; ORBITS; REPRESENTATIONS; FLOWS;
D O I
10.2140/gt.2023.27.513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected semisimple real algebraic group, and F < G a Zariski dense Anosov subgroup with respect to a minimal parabolic subgroup. We describe the asymptotic behavior of matrix coefficients ((exptv):f1, f2) in L2(F\G) as t-* oo for any f1, f2 E Cc(F\G) and any vector v in the interior of the limit cone of F. These asymptotics involve higher-rank analogues of Burger-Roblin measures, which are introduced in this paper. As an application, for any affine symmetric subgroup H of G, we obtain a bisector counting result for F-orbits with respect to the corresponding generalized Cartan decomposition of G. Moreover, we obtain analogues of the results of Duke, Rudnick and Sarnak as well as Eskin and McMullen for counting discrete F-orbits in affine symmetric spaces H\G.
引用
收藏
页码:513 / 573
页数:62
相关论文
共 51 条
[31]   Local Mixing and Invariant Measures for Horospherical Subgroups on Abelian Covers [J].
Oh, Hee ;
Pan, Wenyu .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (19) :6036-6088
[32]   UNIFORM EXPONENTIAL MIXING AND RESONANCE FREE REGIONS FOR CONVEX COCOMPACT CONGRUENCE SUBGROUPS OF SL2(Z) [J].
Oh, Hee ;
Winter, Dale .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (04) :1069-1115
[33]  
Oh H, 2013, J AM MATH SOC, V26, P511
[34]   LIMIT SET OF A FUCHSIAN GROUP [J].
PATTERSON, SJ .
ACTA MATHEMATICA, 1976, 136 (3-4) :241-273
[35]   Eigenvalues and entropy of a Hitchin representation [J].
Potrie, Rafael ;
Sambarino, Andres .
INVENTIONES MATHEMATICAE, 2017, 209 (03) :885-925
[36]  
QUINT J., 2006, LECT NOTES
[37]   Schottky groups and counting [J].
Quint, JF .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (02) :373-+
[38]   The growth indicator for Schottky groups [J].
Quint, JF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :249-272
[39]   Exponential divergence of higher-rank discrete subgroups [J].
Quint, JF .
COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (03) :563-608
[40]  
Quint JF, 2002, GEOM FUNCT ANAL, V12, P776, DOI 10.1007/s00039-002-8266-4