Anosov groups: local mixing, counting and equidistribution

被引:10
作者
Edwards, Samuel [1 ,2 ]
Lee, Minju [1 ,3 ]
Oh, Hee [1 ,4 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
[2] Univ Durham, Dept Math, Durham, England
[3] Univ Chicago, Dept Math, Chicago, IL USA
[4] Korea Inst Adv Study Seoul, Seoul, South Korea
关键词
ASYMPTOTIC PROPERTIES; MATRIX COEFFICIENTS; SYMMETRIC-SPACES; INTEGRAL POINTS; SUBGROUPS; ORBITS; REPRESENTATIONS; FLOWS;
D O I
10.2140/gt.2023.27.513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected semisimple real algebraic group, and F < G a Zariski dense Anosov subgroup with respect to a minimal parabolic subgroup. We describe the asymptotic behavior of matrix coefficients ((exptv):f1, f2) in L2(F\G) as t-* oo for any f1, f2 E Cc(F\G) and any vector v in the interior of the limit cone of F. These asymptotics involve higher-rank analogues of Burger-Roblin measures, which are introduced in this paper. As an application, for any affine symmetric subgroup H of G, we obtain a bisector counting result for F-orbits with respect to the corresponding generalized Cartan decomposition of G. Moreover, we obtain analogues of the results of Duke, Rudnick and Sarnak as well as Eskin and McMullen for counting discrete F-orbits in affine symmetric spaces H\G.
引用
收藏
页码:513 / 573
页数:62
相关论文
共 51 条
  • [1] Benoist Y, 1997, GEOM FUNCT ANAL, V7, P1, DOI 10.1007/PL00001613
  • [2] EFFECTIVE EQUIDISTRIBUTION OF S-INTEGRAL POINTS ON SYMMETRIC VARIETIES
    Benoist, Yves
    Oh, Hee
    [J]. ANNALES DE L INSTITUT FOURIER, 2012, 62 (05) : 1889 - 1942
  • [3] Anosov representations and dominated splittings
    Bochi, Jairo
    Potrie, Rafael
    Sambarino, Andres
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (11) : 3343 - 3414
  • [4] The pressure metric for Anosov representations
    Bridgeman, Martin
    Canary, Richard
    Labourie, Francois
    Sambarino, Andres
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (04) : 1089 - 1179
  • [5] HOROCYCLE FLOW ON GEOMETRICALLY FINITE SURFACES
    BURGER, M
    [J]. DUKE MATHEMATICAL JOURNAL, 1990, 61 (03) : 779 - 803
  • [6] Growth of Quadratic Forms Under Anosov Subgroups
    Carvajales, Leon
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (01) : 785 - 854
  • [7] Carvajales L, 2020, ANN I FOURIER, V70, P1199
  • [8] Local Mixing of One-Parameter Diagonal Flows on Anosov Homogeneous Spaces
    Chow, Michael
    Sarkar, Pratyush
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (18) : 15834 - 15895
  • [9] DENSITY OF INTEGER POINTS ON AFFINE HOMOGENEOUS VARIETIES
    DUKE, W
    RUDNICK, Z
    SARNAK, P
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) : 143 - 179
  • [10] MIXING, COUNTING, AND EQUIDISTRIBUTION IN LIE-GROUPS
    ESKIN, A
    MCMULLEN, C
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) : 181 - 209