Design of experiment for hydrogen production from ethanol reforming: A state-of-the-art review

被引:48
作者
Chen, Wei-Hsin [1 ,2 ,3 ]
Biswas, Partha Pratim [2 ,4 ]
Ubando, Aristotle T. [5 ,6 ,7 ]
Park, Young-Kwon [8 ]
Ashokkumar, Veeramuthu [9 ]
Chang, Jo-Shu [2 ,10 ,11 ]
机构
[1] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan 701, Taiwan
[2] Tunghai Univ, Res Ctr Smart Sustainable Circular Econ, Taichung 407, Taiwan
[3] Natl Chin Yi Univ Technol, Dept Mech Engn, Taichung 411, Taiwan
[4] Tunghai Univ, Coll Engn, Taichung 407, Taiwan
[5] De La Salle Univ, Dept Mech Engn, 2401 Taft Ave, Manila 0922, Philippines
[6] De La Salle Univ, Thermomechan Lab, Laguna Campus,LTI Spine Rd,Laguna Blvd, Laguna 4024, Philippines
[7] De La Salle Univ, Ctr Engn & Sustainable Dev Res, 2401 Taft Ave, Manila 0922, Philippines
[8] Univ Seoul, Sch Environm Engn, Seoul 02504, South Korea
[9] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Dent Coll, Ctr Transdisciplinary Res,Biorefineries Biofuels &, Chennai 600077, India
[10] Tunghai Univ, Dept Chem & Mat Engn, Taichung 407, Taiwan
[11] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
关键词
Hydrogen production; Response surface methodology (RSM); Taguchi method; Optimization; Steam reforming; Water gas shift reaction; WATER-GAS SHIFT; LIFE-CYCLE ASSESSMENT; PARTIAL-OXIDATION; BIO-ETHANOL; FUEL-CELLS; THERMODYNAMIC ANALYSIS; SURFACE-AREA; STEAM; CATALYSTS; METHANOL;
D O I
10.1016/j.fuel.2023.127871
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen production from bioethanol has garnered significant research attention due to its renewability, sus-tainability, and net zero emission. This research aims to review two statistical optimization techniques, response surface methodology (RSM) and the Taguchi method, for hydrogen production from ethanol thermochemical conversion. The RSM model demonstrated that temperature increases hydrogen production, which peaked be-tween 500 degrees C and 600 degrees C for ethanol steam reformation (ESR) and >700 degrees C for ethanol autothermal reforming (ATR) processes. Maximum hydrogen synthesis occurs at steam-to-ethanol (S/E) ratios of 3-5 mol.moli 1 for both ethanol steam and autothermal reforming. Adding oxygen, a characteristic parameter of autothermal reforming, reduces hydrogen production. Ethanol autothermal reforming may be less efficient than ethanol steam reforming for hydrogen production. The impacting parameters for ethanol reforming identified by Taguchi techniques are steam-to-carbon ratio, ethanol steam reforming temperature, and water-gas shift reaction temperature, where steam-to-carbon ratio and ethanol steam reforming regulate hydrogen production substantially. The Taguchi approach reveals that an ethanol flow rate of 2 cm3.mini 1, a steam-to-carbon ratio of 5, and an ethanol steam reforming temperature of 500 degrees C are optimal reaction conditions. Optimization strategies improve biohydrogen production and make the following reaction more precise. For example, only optimization approaches can determine if a parameter should be reinforced or lowered.
引用
收藏
页数:16
相关论文
共 95 条
[1]   A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders [J].
Anil, S. ;
Indraja, S. ;
Singh, R. ;
Appari, S. ;
Roy, B. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (13) :8177-8213
[2]  
[Anonymous], 2004, Extrusion: the definitive processing guide and handbook
[3]   On the use of a non-thermal plasma reactor for ethanol steam reforming [J].
Aubry, O ;
Met, C ;
Khacef, A ;
Cormier, JM .
CHEMICAL ENGINEERING JOURNAL, 2005, 106 (03) :241-247
[4]   Advances in ethanol autothermal reforming [J].
Baruah, Renika ;
Dixit, Marm ;
Basarkar, Pratik ;
Parikh, Dhrupad ;
Bhargav, Atul .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 51 :1345-1353
[5]   Modeling and optimization I: Usability of response surface methodology [J].
Bas, Deniz ;
Boyaci, Ismail H. .
JOURNAL OF FOOD ENGINEERING, 2007, 78 (03) :836-845
[6]   Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J].
Breen, JP ;
Burch, R ;
Coleman, HM .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 39 (01) :65-74
[7]   THE ROLE OF COPPER AND ZINC-OXIDE IN METHANOL SYNTHESIS CATALYSTS [J].
BURCH, R ;
GOLUNSKI, SE ;
SPENCER, MS .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (15) :2683-2691
[8]   Hydrogen production from ethanol over Ir/CeO2 catalysts:: A comparative study of steam reforming, partial oxidation and oxidative steam reforming [J].
Cai, Weijie ;
Wang, Fagen ;
Zhan, Ensheng ;
Van Veen, A. C. ;
Mirodatos, Claude ;
Shen, Wenjie .
JOURNAL OF CATALYSIS, 2008, 257 (01) :96-107
[9]   Ethanol reforming processes over ZnO-supported palladium catalysts: Effect of alloy formation [J].
Casanovas, A ;
Llorca, J ;
Homs, N ;
Fierro, JLG ;
de la Piscina, PR .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2006, 250 (1-2) :44-49
[10]   Hydrogen production and carbon dioxide enrichment from ethanol steam reforming followed by water gas shift reaction [J].
Chen, Chih-Chun ;
Tseng, Huan-Hsiung ;
Lin, Yu-Li ;
Chen, Wei-Hsin .
JOURNAL OF CLEANER PRODUCTION, 2017, 162 :1430-1441